160 research outputs found

    Integrated water resources management as a new approach to water security

    Get PDF
    Access to safe water is a worldwide problem facing three quarters of a billion people every day. The problem of access to water is not primarily due to an overall scarcity of water, but rather the unequal geographical and seasonal distribution of the water resources. The key issue at stake here is, how to make water available. The new approach presented by international institutions for improving water access is Integrated Water Resource Management. This chapter questions this new approach and highlights the depoliticizing implications

    Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER

    Get PDF
    Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER

    Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and <it>Mycobacterium tuberculosis </it>represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood.</p> <p>Findings</p> <p>To analyze the interactions between <it>M. tuberculosis </it>and immune cells, human peripheral blood monocyte-derived immature DCs were infected with <it>M. tuberculosis </it>H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the <it>M. tuberculosis </it>infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p < 0.05) up regulation following infection with <it>M. tuberculosis </it>in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS) from <it>Salmonella abortus equi</it>, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with <it>M. tuberculosis </it>infected DC. It was revealed that the <it>M. tuberculosis </it>infected DC induced T cell proliferation.</p> <p>Conclusion</p> <p>These data clearly demonstrate that <it>M. tuberculosis </it>induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation <it>in vitro</it>.</p

    Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site-engineering of sphingomyelin synthases

    Get PDF
    SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes

    High seroprevalence of anti-SARS-CoV-2 antibodies among Ethiopian healthcare workers

    Get PDF
    BACKGROUND: COVID-19 pandemic has a devastating impact on the economies and health care system of sub-Saharan Africa. Healthcare workers (HWs), the main actors of the health system, are at higher risk because of their occupation. Serology-based estimates of SARS-CoV-2 infection among HWs represent a measure of HWs' exposure to the virus and could be used as a guide to the prevalence of SARS-CoV-2 in the community and valuable in combating COVID-19. This information is currently lacking in Ethiopia and other African countries. This study aimed to develop an in-house antibody testing assay, assess the prevalence of SARS-CoV-2 antibodies among Ethiopian high-risk frontline HWs. METHODS: We developed and validated an in-house Enzyme-Linked Immunosorbent Assay (ELISA) for specific detection of anti-SARS-CoV-2 receptor binding domain immunoglobin G (IgG) antibodies. We then used this assay to assess the seroprevalence among HWs in five public hospitals located in different geographic regions of Ethiopia. From consenting HWs, blood samples were collected between December 2020 and February 2021, the period between the two peaks of COVID-19 in Ethiopia. Socio-demographic and clinical data were collected using questionnaire-based interviews. Descriptive statistics and bivariate and multivariate logistic regression were used to determine the overall and post-stratified seroprevalence and the association between seropositivity and potential risk factors. RESULTS: Our successfully developed in-house assay sensitivity was 100% in serum samples collected 2- weeks after the first onset of symptoms whereas its specificity in pre-COVID-19 pandemic sera was 97.7%. Using this assay, we analyzed a total of 1997 sera collected from HWs. Of 1997 HWs who provided a blood sample, and demographic and clinical data, 51.7% were females, 74.0% had no symptoms compatible with COVID-19, and 29.0% had a history of contact with suspected or confirmed patients with SARS-CoV-2 infection. The overall seroprevalence was 39.6%. The lowest (24.5%) and the highest (48.0%) seroprevalence rates were found in Hiwot Fana Specialized Hospital in Harar and ALERT Hospital in Addis Ababa, respectively. Of the 821 seropositive HWs, 224(27.3%) of them had a history of symptoms consistent with COVID-19 while 436 (> 53%) of them had no contact with COVID-19 cases as well as no history of COVID-19 like symptoms. A history of close contact with suspected/confirmed COVID-19 cases is associated with seropositivity (Adjusted Odds Ratio (AOR) = 1.4, 95% CI 1.1-1.8; p = 0.015). CONCLUSION: High SARS-CoV-2 seroprevalence levels were observed in the five Ethiopian hospitals. These findings highlight the significant burden of asymptomatic infection in Ethiopia and may reflect the scale of transmission in the general population

    Role of Sphingomyelin Synthase in Controlling the Antimicrobial Activity of Neutrophils against Cryptococcus neoformans

    Get PDF
    The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection

    Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges

    Get PDF
    Reliable estimates of regional evapotranspiration are necessary to improve water resources management and planning. However, direct measurements of evaporation are expensive and difficult to obtain. Some of the difficulties are illustrated in a comparison of several satellite-based estimates of evapotranspiration for the Upper Blue Nile (UBN) basin in Ethiopia. These estimates disagree both temporally and spatially. All the available data products underestimate evapotranspiration leading to basin-scale mass balance errors on the order of 35 percent of the mean annual rainfall. This paper presents a methodology that combines satellite observations of rainfall, terrestrial water storage as well as river-flow gauge measurements to estimate actual evapotranspiration over the UBN basin. The estimates derived from these inputs are constrained using a one-layer soil water balance and routing model. Our results describe physically consistent long-term spatial and temporal distributions of key hydrologic variables, including rainfall, evapotranspiration, and river-flow. We estimate an annual evapotranspiration over the UBN basin of about 2.55 mm per day. Spatial and temporal evapotranspiration trends are revealed by dividing the basin into smaller subbasins. The methodology described here is applicable to other basins with limited observational coverage that are facing similar future challenges of water scarcity and climate change

    Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    Get PDF
    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD), to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN), the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP) from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2) are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi

    Chlamydia trachomatis Co-opts GBF1 and CERT to Acquire Host Sphingomyelin for Distinct Roles during Intracellular Development

    Get PDF
    The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche

    Social media marketing strategy: definition, conceptualization, taxonomy, validation, and future agenda

    Get PDF
    Although social media use is gaining increasing importance as a component of firms’ portfolio of strategies, scant research has systematically consolidated and extended knowledge on social media marketing strategies (SMMSs). To fill this research gap, we first define SMMS, using social media and marketing strategy dimensions. This is followed by a conceptualization of the developmental process of SMMSs, which comprises four major components, namely drivers, inputs, throughputs, and outputs. Next, we propose a taxonomy that classifies SMMSs into four types according to their strategic maturity level: social commerce strategy, social content strategy, social monitoring strategy, and social CRM strategy. We subsequently validate this taxonomy of SMMSs using information derived from prior empirical studies, as well with data collected from in-depth interviews and a quantitive survey among social media marketing managers. Finally, we suggest fruitful directions for future research based on input received from scholars specializing in the field
    • …
    corecore