21 research outputs found

    Higgs Boson Studies at the Tevatron

    Get PDF
    We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90--200 GeV/c2/c^2 produced in the gluon-gluon fusion, WHWH, ZHZH, ttˉHt{\bar{t}}H, and vector boson fusion processes, and decaying in the HbbˉH\rightarrow b{\bar{b}}, HW+WH\rightarrow W^+W^-, HZZH\rightarrow ZZ, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow \gamma\gamma modes. The data correspond to integrated luminosities of up to 10 fb1^{-1} and were collected at the Fermilab Tevatron in ppˉp{\bar{p}} collisions at s=1.96\sqrt{s}=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2c^2. The local significance corresponds to 3.0 standard deviations at mH=125m_H=125 GeV/c2c^2, consistent with the mass of the Higgs boson observed at the LHC, and we expect a local significance of 1.9 standard deviations. We separately combine searches for HbbˉH \to b\bar{b}, HW+WH \to W^+W^-, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow\gamma\gamma. The observed signal strengths in all channels are consistent with the presence of a standard model Higgs boson with a mass of 125 GeV/c2c^2

    A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials

    No full text
    Active materials are media for which deformations can occur in absence of loads, given an external stimulus. Two approaches to the modeling of such materials are mainly used in literature, both based on the introduction of a new tensor: an additive stress Pact in the active stress case and a multiplicative strain Fa in the active strain one. Aim of this paper is the comparison between the two approaches on simple shears. Considering an incompressible and transversely isotropic material, we design constitutive relations for Pact and Fa so that they produce the same results for a uniaxial deformation along the symmetry axis. We then study the two approaches in the case of a simple shear deformation. In a hyperelastic setting, we show that the two approaches produce different stress components along a simple shear, unless some necessary conditions on the strain energy density are fulfilled. However, such conditions are very restrictive and rule out the usual elastic strain energy functionals. Active stress and active strain therefore produce different results in shear, even if they both fit uniaxial data. Our results show that experimental data on the stress-stretch response on uniaxial deformations are not enough to establish which activation approach can capture better the mechanics of active materials. We conclude that other types of deformations, beyond the uniaxial one, should be taken into consideration in the modeling of such materials
    corecore