130 research outputs found

    Economic mapping and assessment of Cymodocea nodosa meadows as nursery grounds for commercially important fish species. A case study in the Canary Islands

    Get PDF
    Cymodocea nodosa seagrass meadows provide several socio-economically ecosystem services, including nurseries for numerous species of commercial interest. These seagrasses are experiencing a worldwide decline, with global loss rates approaching 5% per year, mainly related to coastal human activities. Cymodocea nodosa, the predominant seagrass in the Canary Archipelago (Spain), is also exposed to these threats, which could lead to habitat loss or even local disappearance. In this case study, we estimated the potential economic value of Cymodocea nodosa seagrass meadows for local fisheries at an archipelago scale. Habitat suitability maps were constructed using MAXENT 3.4.1, a software for modelling species distributions by applying a maximum entropy machine-learning method, from a set of environmental variables and presence and background records extracted from historical cartographies. This model allows characterising and assessing the C. nodosa habitat suitability, overcoming the implicit complexity derived from seasonal changes in this species highly dynamic meadows and using it as a first step for the mapping and assessment of ecosystem services. In a second step, value transfer methodologies were used, along with published economic valuations of commercially-interesting fish species related to C. nodosa meadows. We estimate that the potential monetary value of these species can add up to more than 3 million euros per year for the entire Archipelago. The simplicity of the proposed methodology facilitates its repeatability in other similar regions, using freely available data and hence, being suitable for data-scarce scenarios.En prens

    Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate

    Get PDF
    Assessing effects of herbivory across broad gradients of varying ocean climate conditions and over small spatial scales is crucial for understand- ing its influence on primary producers. Effects of her- bivory on the distribution and abundance of kelp re- cruits were examined experimentally at two regions under contrasting ocean climate. Specifically, the abundance and survivorship of kelp recruits and the abundance of macro-herbivores were compared be- tween a ‘cool’ and a ‘warm’ region in northern and central Portugal, respectively. In each region, the abundance of kelp recruits and the intensity of grazing were compared between habitats of different topography within reefs (open reef vs. crevices). Com- pared to the ‘warm’ region, the abundance of kelp re- cruits was 3.9 times greater in the ‘cool’ region, where 85% of recruits were found in open reef habitats. In contrast, 87% of recruits in the ‘warm’ region were re- stricted to crevices. The ‘warm’ region had 140 times greater abundances of sea urchins, 45 times more herbivorous fish and 4.1 times more grazing marks on kelp recruits than the ‘cool’ region. Grazing assays showed ca. 50 times higher rates of kelp biomass con- sumption, mainly by fishes, and zero survivorship of kelp recruits in the ‘warm’ relative to the ‘cool’ region. This study suggests both temperature and herbivores affect abundances of kelp recruits across latitudes, and demonstrates how herbivores affect their distri- bution at local scales, driving kelp recruits into ‘hiding’ in crevices under intense herbivory. Conse- quently, where net recruitment success is compro- mised by herbivory, the persistence of kelps will be contingent on availability of topographical refuges

    VIPR: A probabilistic algorithm for analysis of microbial detection microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All infectious disease oriented clinical diagnostic assays in use today focus on detecting the presence of a single, well defined target agent or a set of agents. In recent years, microarray-based diagnostics have been developed that greatly facilitate the highly parallel detection of multiple microbes that may be present in a given clinical specimen. While several algorithms have been described for interpretation of diagnostic microarrays, none of the existing approaches is capable of incorporating training data generated from positive control samples to improve performance.</p> <p>Results</p> <p>To specifically address this issue we have developed a novel interpretive algorithm, VIPR (<b>V</b>iral <b>I</b>dentification using a <b>PR</b>obabilistic algorithm), which uses Bayesian inference to capitalize on empirical training data to optimize detection sensitivity. To illustrate this approach, we have focused on the detection of viruses that cause hemorrhagic fever (HF) using a custom HF-virus microarray. VIPR was used to analyze 110 empirical microarray hybridizations generated from 33 distinct virus species. An accuracy of 94% was achieved as measured by leave-one-out cross validation. <it>Conclusions</it></p> <p>VIPR outperformed previously described algorithms for this dataset. The VIPR algorithm has potential to be broadly applicable to clinical diagnostic settings, wherein positive controls are typically readily available for generation of training data.</p

    Climate-driven regime shift of a temperate marine ecosystem.

    Get PDF
    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests

    Recent trend reversal for declining European seagrass meadows

    Get PDF
    Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported, but the changes in extent and density at the continental scale remain unclear. Here we collate assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s. Since then, loss rates slowed down for most of the species and fastgrowing species recovered in some locations, making the net rate of change in seagrass area experience a reversal in the 2000s, while density metrics improved or remained stable in most sites. Our results demonstrate that decline is not the generalised state among seagrasses nowadays in Europe, in contrast with global assessments, and that deceleration and reversal of declining trends is possible, expectingly bringing back the services they provide

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Seagrass and submerged aquatic vegetation (VAS) habitats off the Coast of Brazil: state of knowledge, conservation and main threats

    Get PDF
    Seagrass meadows are among the most threatened ecosystems on earth, raising concerns about the equilibrium of coastal ecosystems and the sustainability of local fisheries. The present review evaluated the current status of the research on seagrasses and submerged aquatic vegetation (SAV) habitats off the coast of Brazil in terms of plant responses to environmental conditions, changes in distribution and abundance, and the possible role of climate change and variability. Despite an increase in the number of studies, the communication of the results is still relatively limited and is mainly addressed to a national or regional public; thus, South American seagrasses are rarely included or cited in global reviews and models. The scarcity of large-scale and long-term studies allowing the detection of changes in the structure, abundance and composition of seagrass habitats and associated species still hinders the investigation of such communities with respect to the potential effects of climate change. Seagrass meadows and SAV occur all along the Brazilian coast, with species distribution and abundance being strongly influenced by regional oceanography, coastal water masses, river runoff and coastal geomorphology. Based on these geomorphological, hydrological and ecological features, we characterised the distribution of seagrass habitats and abundances within the major coastal compartments. The current conservation status of Brazilian seagrasses and SAV is critical. The unsustainable exploitation and occupation of coastal areas and the multifold anthropogenic footprints left during the last 100 years led to the loss and degradation of shoreline habitats potentially suitable for seagrass occupation. Knowledge of the prevailing patterns and processes governing seagrass structure and functioning along the Brazilian coast is necessary for the global discussion on climate change. Our review is a first and much-needed step toward a more integrated and inclusive approach to understanding the diversity of coastal plant formations along the Southwestern Atlantic coast as well as a regional alert the projected or predicted effects of global changes on the goods and services provided by regional seagrasses and SAV
    • …
    corecore