264 research outputs found

    Genetic Susceptibility to Differentiated Thyroid Cancer

    Get PDF
    Differentiated thyroid carcinoma (DTC) represents more than 90% of all thyroid cancer histological types. Its incidence has increased at a faster rate than most other malignancies during the last three decades and varies considerably around the world. The familial form of the disease has also become more common than previously reported, accounting for 5−15% of DTC cases. The main established risk factor of thyroid cancer is exposure to ionizing radiation, particularly if occurred during childhood. Thyroid cancer (including DTC) is also characterized by having one of the highest familial risks of any cancer supporting heritable predisposition. In spite of such a high familial risk, linkage analysis in non-syndromic DTC families (i.e. families where DTC is the primary cancer) performed two decades ago mapped several susceptibility loci but did not lead to the identification of high-penetrance causal germline variants. More recently, genome-wide association studies based on population case–control studies identified a limited number of DTC-associated loci and suggested that multiple low penetrance genes are involved in predisposition to DTC. This chapter reviews known genetic factors predisposing to DTC as well as approaches used to map them in various populations, and opens up on alternative strategies that could help to understand DTC tumorigenesis

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Associations between dietary inflammatory scores and biomarkers of inflammation in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    Get PDF
    Background: Since the first version of the dietary inflammatory index (DII & REG;) developed in the past decade, several other versions have been developed. However, to date no study has attempted to compare these versions with respect to their associations with biomarkers of inflammation. Objective: We aimed to investigate the relationship between four dietary inflammatory scores [DII, two energy-adjusted derivatives (E-DII and E-DIIr), and the Inflammatory Score of the Diet (ISD)], and circulating levels of several inflammatory markers and adipokines. Methods: This study included 17 637 participants from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort with at least one marker of inflammation measured in blood. Associations between the four scores and C-reactive protein (CRP), interleukin (IL)6, IL10, IL1RA, tumor necrosis factor-a (TNFa), soluble tumor necrosis factor receptor-1 (sTNFR1), sTNFR2, leptin, soluble leptin receptor (sLeptin R), adiponectin, and High Molecular Weight (HMW) adiponectin were evaluated using multivariable linear regressions adjusted for potential confounders. Results: Positive associations were observed between the four dietary inflammatory scores and levels of CRP, IL6, sTNFR1, sTNFR2 and leptin. However, only the DII and the ISD were positively associated with IL1RA levels and only the DII and the E-DIIr were positively associated with TNFa levels. The proportion of variance of each biomarker explained by the scores was lower than 2%, which was equivalent to the Conclusions: Our results suggest that the four dietary inflammatory scores were associated with some biomarkers of inflammation and could be used to assess the inflammatory potential of diet in European adults but are not sufficient to capture the inflammatory status of an individual. These findings can help to better understand the inflammatory potential of diet, but they need to be replicated in studies with repeated dietary measurements. Crown Copyright & COPY; 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-N

    Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    Get PDF
    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(−07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m(2) (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m(2) or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10(−05)). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci

    Spectrum and Frequency of Germline FANCM Protein-Truncating Variants in 44,803 European Female Breast Cancer Cases

    Get PDF

    Genetic predisposition to ductal carcinoma in situ of the breast.

    Get PDF
    BACKGROUND: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. METHODS: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. RESULTS: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10(-8). CONCLUSION: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist

    Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?

    Get PDF
    In this study we aim to examine gene–environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10−3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10−4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk

    Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?

    Get PDF
    In this study we aim to examine gene–environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10−3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10−4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk

    Genetic predisposition to ductal carcinoma in situ of the breast

    Get PDF
    Background: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. Methods: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. Results: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10-8. Conclusion: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist
    corecore