73 research outputs found
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Improved Measurement of Double Helicity Asymmetry in Inclusive Midrapidity pi^0 Production for Polarized p+p Collisions at sqrt(s)=200 GeV
We present an improved measurement of the double helicity asymmetry for pi^0
production in polarized proton-proton scattering at sqrt(s) = 200 GeV employing
the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The
improvements to our previous measurement come from two main factors: Inclusion
of a new data set from the 2004 RHIC run with higher beam polarizations than
the earlier run and a recalibration of the beam polarization measurements,
which resulted in reduced uncertainties and increased beam polarizations. The
results are compared to a Next to Leading Order (NLO) perturbative Quantum
Chromodynamics (pQCD) calculation with a range of polarized gluon
distributions.Comment: 389 authors, 4 pages, 2 tables, 1 figure. Submitted to Phys. Rev. D,
Rapid Communications. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Process Simulation and Control Optimization of a Blast Furnace Using Classical Thermodynamics Combined to a Direct Search Algorithm
Several numerical approaches have been proposed in the literature to simulate the behavior of modern blast furnaces: finite volume methods, data-mining models, heat and mass balance models, and classical thermodynamic simulations. Despite this, there is actually no efficient method for evaluating quickly optimal operating parameters of a blast furnace as a function of the iron ore composition, which takes into account all potential chemical reactions that could occur in the system. In the current study, we propose a global simulation strategy of a blast furnace, the 5-unit process simulation. It is based on classical thermodynamic calculations coupled to a direct search algorithm to optimize process parameters. These parameters include the minimum required metallurgical coke consumption as well as the optimal blast chemical composition and the total charge that simultaneously satisfy the overall heat and mass balances of the system. Moreover, a Gibbs free energy function for metallurgical coke is parameterized in the current study and used to fine-tune the simulation of the blast furnace. Optimal operating conditions and predicted output stream properties calculated by the proposed thermodynamic simulation strategy are compared with reference data found in the literature and have proven the validity and high precision of this simulation
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
J/psi Production and Nuclear Effects for d+Au and p+p Collisions at sqrt(s_NN) = 200 GeV
J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been
measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross
sections and nuclear dependence of J/\psi production versus rapidity,
transverse momentum, and centrality are obtained and compared to lower energy
p+A results and to theoretical models. The observed nuclear dependence in d+Au
collisions is found to be modest, suggesting that the absorption in the final
state is weak and the shadowing of the gluon distributions is small and
consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based
parameterizations that fit deep-inelastic scattering and Drell-Yan data at
lower energies.Comment: 331 authors, 6 pages text, 3 figures. Published in PRL. Version 2 has
minor changes required during the review and production process. Of
significant note are that (a) the original Figs. 3 and 4 are combined into a
single Fig. 3 and (b) the value of (p_T)**2 at x_F=0 changed from 3.17+/-0.33
to 3.03+/-0.40. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/papers.htm
Mechanically Induced Carbonization for Formation of Nanocrystalline TiC Alloy
A single phase of NaCl-type structure of Ti_C_ alloy powder has been synthesized by ball-milling elemental Ti and graphite powders at room temperature. The end-product of Ti_C_ that is obtained after 720 ks of milling consists of fine grains of about 3 nm in diameter and possesses homogeneous powder with an average particle diameter of less than 0.4μm. The milled powder has been consolidated into bulk samples, using a plasma activated sintering method. This consolidation step leads to the formation of fully-dense TiC compacts with nano-structure grains. The as-milled powder and the as-consolidated bulk samples have been characterized after selected milling times by means of X-ray diffraction, transmission electron microscope, scanning electron microscope and chemical analyses. Some of the compacted samples were investigated by small-angle X-ray scattering and high-resolution transmission electron microscope. The hardness and some mechanical properties of the end-product are reported. On the basis of the results of the present study, the ball-milling technique accompanied with plasma activated sintering can provide powerful tools for fabrication of nanocrystalline TiC bulk alloys
- …