30 research outputs found

    Regional climate model assessment of the urban land-surface forcing over central Europe

    Get PDF
    International audienceFor the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005–2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to −0.6 m s−1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s−1). Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to −2 mm day−1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage

    Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    No full text
    International audienceAs formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI) is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs) on the global scale over 2005–2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM) in order to minimize the discrepancy between the observed and mod-eled HCHO columns. The top–down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s) inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top–down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5) and isoprene emissions (MEGAN-MACC and GUESSES). The inversion indicates a moderate decrease (ca. 20 %) in the average annual global fire and isoprene emissions, from 2028 Tg C in the a priori to 1653 Tg C for burned biomass, and from 343 to 272 Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formalde-hyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top–down fire fluxes (30–50 %) are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Ama-zonia (in 2005, 2007, and 2010), bushfires in Australia (in 2006 and 2011), and peat burning in Indonesia (in 2006 and 2009), whereas generally increased fluxes are suggested in Indochina and during the 2007 fires in southern Europe. Moreover, changes in fire seasonal patterns are suggested; e.g., the seasonal amplitude is reduced over southeast Asia. In Africa, the inversion indicates increased fluxes due to agricultural fires and decreased maxima when natural fires are dominant. The top–down fire emissions are much better correlated with MODIS fire counts than the a priori inventory in regions with small and agricultural fires, indicating that the OMI-based inversion is well-suited to assess the associated emissions. Regarding biogenic sources, significant reductions in iso-prene fluxes are inferred in tropical ecosystems (30–40 %), suggesting overestimated basal emission rates in those areas in the bottom–up inventory, whereas strongly positive isoprene emission updates are derived over semiarid and desert areas, especially in southern Africa and Australia. This finding suggests that the parameterization of the soil Published by Copernicus Publications on behalf of the European Geosciences Union. 10134 M. Bauwens et al.: Nine years of OMI-based hydrocarbon emissions moisture stress used in MEGAN greatly exaggerates the flux reduction due to drought in those regions. The iso-prene emission trends over 2005–2013 are often enhanced after optimization, with positive top–down trends in Siberia (4.2 % year −1) and eastern Europe (3.9 % year −1), likely reflecting forest expansion and warming temperatures, and negative trends in Amazonia (−2.1 % year −1), south China (−1 % year −1), the United States (−3.7 % year −1), and western Europe (−3.3 % year −1), which are generally corroborated by independent studies, yet their interpretation warrants further investigation

    Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    Get PDF
    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980-2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr−1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2%. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, α-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest

    Atmospheric Chemistry and Physics Discussions

    No full text
    www.atmos-chem-phys-discuss.net/14/10725/2014/ doi:10.5194/acpd-14-10725-2014 © Author(s) 2014. CC Attribution 3.0 License

    Chemistry and the Linkages between Air Quality and Climate Change

    Get PDF
    International audienceClimate change and air pollution are critical environmental issues both in the here and now and for the coming decades. A recent OECD report found that unless action is taken, air pollution will be the largest environmental cause of premature death worldwide by 2050. Already, air pollution levels in Asia are far above acceptable levels for human health, and even in Europe, the vast majority of the urban population was exposed to air pollution concentrations exceeding the EU daily limit values, and especially the stricter WHO air quality guidelines in the past decade. The most recent synthesis of climate change research as presented in the fifth IPCC Assessment Report (AR5) states that the warming of the climate system is unequivocal, recognizing the dominant cause as human influence, and providing evidence for a 43% higher total (from 1750 to the present) anthropogenic radiative forcing (RF) than was reported in 2005 from the previous assessment report

    Amazonian biogenic volatile organic compounds under global change

    No full text
    Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change
    corecore