385 research outputs found

    Evidence for a dual population of neutron star mergers from short Gamma-Ray Burst observations

    Full text link
    Short duration Gamma-Ray Bursts are thought to originate from the coalescence of neutron stars in binary systems. They are detected as a brief (<< 2s), intense flash of gamma-ray radiation followed by a weaker, rapidly decreasing afterglow. They are expected to be detected by Advanced LIGO and Virgo when their sensitivity will be low enough. In a recent study we identified a population of short Gamma-Ray Bursts that are intrinsically faint and nearby. Here we provide evidence in favor of the existence of this new population that can hardly be reproduced with a model of field neutron star binary coalescences. We propose that these systems may be produced dynamically in globular clusters, and may result from the merger of a black hole and a neutron star. The advanced LIGO and Virgo observation of a high rate of NSBH mergers compatible with the dynamical formation in globular clusters would be a confirmation of this hypothesis and would enable for the derivation of the mass function of black holes inside globular clusters, as well as the luminosity function of faint short GRBs.Comment: 15 pages, 5 figures, 1 table, submitted to Ap

    Revisiting coincidence rate between Gravitational Wave detection and short Gamma-Ray Burst for the Advanced and third generation

    Full text link
    We use realistic Monte-Carlo simulations including both gravitational-wave and short gamma-ray burst selection effects to revisit the coincident rate of binary systems composed of two neutron stars or a neutron star and a black hole. We show that the fraction of GW triggers that can be observed in coincidence with sGRBs is proportional to the beaming factor at z=0z=0, but increases with the distance, until it reaches 100 \% at the GW detector horizon distance. When this is taken into account the rate is improved by a factor of  3~3 compared to the simple beaming factor correction. We provide an estimate of the performance future GRB detectors should achieve in order to fully exploit the potentiality of the planned third generation GW antenna Einstein Telescope, and we propose a simple method to constrain the beaming angle of sGRBs.Comment: 31 pages, 11 figures, 4 tables, accepted for publication in Ap

    Studying the WHIM with Gamma Ray Bursts

    Get PDF
    We assess the possibility to detect and characterize the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast re-pointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict the correct abundance of OVI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions like EDGE and XENIA should be able to detect about 60 WHIM absorbers per year through the OVII line. About 45 % of these have at least two more detectable lines in addition to OVII that can be used to determine the density and the temperature of the gas. Systematic errors in the estimates of the gas density and temperature can be corrected for in a robust, largely model-independent fashion. The analysis of the GRB absorption spectra collected in three years would also allow to measure the cosmic mass density of the WHIM with about 15 % accuracy, although this estimate depends on the WHIM model. Our results suggest that GRBs represent a valid, if not preferable, alternative to Active Galactic Nuclei to study the WHIM in absorption. The analysis of the absorption spectra nicely complements the study of the WHIM in emission that the spectrometer proposed for EDGE and XENIA would be able to carry out thanks to its high sensitivity and large field of view.Comment: 16 pages, 16 figures, accepted for publication by Ap

    Toward an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

    Full text link
    Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localisation, and test models for the progenitors of short gamma ray bursts. We employ optical observations of three short gamma ray bursts, 050724, 050709, 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R-band optical afterglow light curves of these bursts that include a jet-break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m=18), Zadko (m=21) and an (8-10) meter class telescope (m=26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr^{-1} for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident detections yr^{-1}, and would be detectable by Zadko up to five days after the trigger. Late time imaging to m=26 could detect off-axis afterglows for GRB 051221 like bursts several months after the trigger. For a broad distribution of beaming angles, the optimal strategy for identifying the optical emissions triggered by gravitational wave detectors is rapid response searches with robotic telescopes followed by deeper imaging at later times if an afterglow is not detected within several days of the trigger.Comment: 6 pages, 1 figure, Accepted for publication in MNRAS Letters (2011 April 22

    Swift multi-wavelength observations of the bright flaring burst GRB051117A

    Get PDF
    We report on the temporal and spectral characteristics of the early X-ray emission from the Gamma Ray Burst 051117A as observed by Swift. The superb quality of the early X-ray light-curve and spectra of this source, one of the brightest seen by the X-ray Telescope at such early times, allows an unprecedented look at the spectral and temporal evolution of the prompt and early afterglow emission for this GRB and allows us to place stringent limits on the detection of lines. The X-ray light-curve at early times is characteristic of a shot-noise process, with individual shots well-modelled by a fast-rise and exponential decay spanning a broad range in rise-times and decay rates. A temporal spectral analysis of the early light-curve shows that the photon index and source intensity are highly correlated with the spectrum being significantly harder when brighter, consistent with the movement of the peak of the Band function to lower energies following individual flares. The high quality spectrum obtained from the first orbit of WT mode data, enables us to place a 3 sigma upper limit on the strength of any emission line features of EW < 15 eV, assuming a narrow emission-line of 100 eV at the peak of the effective area (abridged).Comment: Accepted 15/3/2007 - To appear in A&

    X-ray Flashes or soft Gamma-ray Bursts? The case of the likely distant XRF 040912

    Get PDF
    In this work, we present a multi-wavelength study of XRF 040912, aimed at measuring its distance scale and the intrinsic burst properties. We performed a detailed spectral and temporal analysis of both the prompt and the afterglow emission and we estimated the distance scale of the likely host galaxy. We then used the currently available sample of XRFs with known distance to discuss the connection between XRFs and classical Gamma-ray Bursts (GRBs). We found that the prompt emission properties unambiguously identify this burst as an XRF, with an observed peak energy of E_p=17+/-13 keV and a burst fluence ratio S(2-30keV)/S(30-400keV)>1. A non-fading optical source with R~24 mag and with an apparently extended morphology is spatially consistent with the X-ray afterglow, likely the host galaxy. XRF 040912 is a very dark burst since no afterglow optical counterpart is detected down to R>25 mag (3 sigma limiting magnitude) at 13.6 hours after the burst. The host galaxy spectrum detected from 3800A to 10000A, shows a single emission line at 9552A. The lack of any other strong emission lines blue-ward of the detected one and the absence of the Ly alpha cut-off down to 3800A are consistent with the hypothesis of the [OII] line at redshift z=1.563+/-0.001. The intrinsic spectral properties rank this XRF among the soft GRBs in the E_peak-E_iso diagram. Similar results were obtained for most XRFs at known redshift. Only XRF 060218 and XRF 020903 represent a good example of instrinsic XRF(i-XRF) and are possibly associated with a different progenitor population. This scenario may calls for a new definition of XRFs.Comment: 10 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    On leptonic models for blazars in the Fermi era

    Full text link
    Some questions raised by Fermi-LAT data about blazars are summarized, along with attempts at solutions within the context of leptonic models. These include both spectral and statistical questions, including the origin of the GeV breaks in low-synchrotron peaked blazars, the location of the gamma-ray emission sites, the correlations in the spectral energy distributions with luminosity, and the difficulty of synchrotron/SSC models to fit the spectra of some TeV blazars.Comment: 9 pages, 1 figure, in "Beamed and Unbeamed Gamma Rays from Galaxies," Muonio, Finland, 11-15 April, 2011, ed. R. Wagner, L. Maraschi, A. Sillanpaa, to appear in Journal of Physics: Conference Serie

    The circumburst density profile around GRB progenitors: a statistical study

    Full text link
    According to our present understanding, long GRBs originate from the collapse of massive stars while short bursts are due to the coalescence of compact stellar objects. Since the afterglow evolution is determined by the circumburst density profile, n(r), traversed by the fireball, it can be used to distinguish between a so-called ISM profile, n(r) = const., and a free stellar wind, n(r)r2n(r) \propto r^{-2}. Our goal is to derive the most probable circumburst density profile for a large number of Swift-detected bursts using well-sampled afterglow light curves in the optical and X-ray bands. We combined all publicly available optical and Swift/X-ray afterglow data from June 2005 to September 2009 to find the best-sampled late-time afterglow light curves. After applying several selection criteria, our final sample consists of 27 bursts, including one short burst. The afterglow evolution was then studied within the framework of the fireball model. We find that the majority (18) of the 27 afterglow light curves are compatible with a constant density medium (ISM case). Only 6 of the 27 afterglows show evidence for a wind profile at late times. In particular, we set upper limits on the wind termination-shock radius, RTR_T, for GRB fireballs which are propagating into an ISM profile and lower limits on RTR_T for those which were found to propagate through a wind medium. Observational evidence for ISM profiles dominates in GRB afterglow studies, implying that most GRB progenitors might have relatively small wind termination-shock radii. A smaller group of progenitors, however, seems to be characterised by notably more extended wind regions.Comment: A&A, accepted (Oct 26, 2010); 20 pages in journal format; 6 pages main text, 13 pages Appendix, 1 page references, 6 tables and 2 figures; included comments by the referee and language editor; removed grey colouring of the table

    VAST: An ASKAP Survey for Variables and Slow Transients

    Get PDF
    The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc. Australi
    corecore