7 research outputs found

    Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli

    Get PDF
    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.Peer reviewedPsychologyZoolog

    Pavlovian conditioning of the proboscis extension reflex in harnessed foragers using paired vs. unpaired and discrimination learning paradigms: tests for differences among honeybee subspecies in Turkey

    No full text
    Experiments utilized three honeybee subspecies from very distinct biomes (Apis mellifera caucasica, A.m. carnica, A.m. syriaca). In experiment one a simple association between odor and a sucrose feeding was readily established in all three subspecies. This association decreased when the conditioned stimulus was no longer followed by a feeding. Neither the learning rate nor extinction rate differed among subspecies. Unpaired controls confirmed that the acquisition of the odor-food association is learned. In experiment two, an attempt to uncover subspecies differences was tested through the ability of bees to discriminate between two odors, one of which is paired with a feeding. Rapid learning occurred in all subspecies and no significant subspecies differences were observed. Finally, discrimination learning was used as an added control to test for honeybee response to an olfactory versus mechanical (air) stimulus

    Foraging response of turkish honey bee subspecies to flower color choices and reward consistency

    No full text
    Foraging behavior of Apis mellifera caucasica, A.m. carnica and A.m. syriaca in Turkey was studied for intrinsic subspecies-based differences. Models of forager flower-color fidelity, risk sensitive behavior and maximizing net gain were tested. Foragers were presented artificial flower patches containing blue, white and yellow flowers. Some bees of each subspecies showed high fidelity to yellow flowers, while others favored blue and white flowers. The degree of fidelity, however, differed among subspecies and was dependent upon which color was favored. Bees of all subspecies demonstrated risk indifferent behavior regardless of whether they favored yellow flowers or blue and white flowers. Flower handling time differed among subspecies and increased with reward quantity, and when a reward was present. Flight time between consecutive flowers also differed among honey bee subspecies. Foragers of all subspecies had a higher net gain when visiting flowers with consistent rewards.NATO (North Atlantic Treaty Organisation) (CLG 981340)National Science Foundation (NSF) (DBI 0552717

    The Influence of Interspecific Competition and Host Preference on the Phylogeography of Two African Ixodid Tick Species

    Get PDF
    A comparative phylogeographic study on two economically important African tick species, Amblyomma hebraeum and Hyalomma rufipes was performed to test the influence of host specificity and host movement on dispersion. Pairwise AMOVA analyses of 277 mtDNA COI sequences supported significant population differentiation among the majority of sampling sites. The geographic mitochondrial structure was not supported by nuclear ITS-2 sequencing, probably attributed to a recent divergence. The three-host generalist, A. hebraeum, showed less mtDNA geographic structure, and a lower level of genetic diversity, while the more host-specific H. rufipes displayed higher levels of population differentiation and two distinct mtDNA assemblages (one predominantly confined to South Africa/Namibia and the other to Mozambique and East Africa). A zone of overlap is present in southern Mozambique. A mechanistic climate model suggests that climate alone cannot be responsible for the disruption in female gene flow. Our findings furthermore suggest that female gene dispersal of ticks is more dependent on the presence of juvenile hosts in the environment than on the ability of adult hosts to disperse across the landscape. Documented interspecific competition between the juvenile stages of H. rufipes and H. truncatum is implicated as a contributing factor towards disrupting gene flow between the two southern African H. rufipes genetic assemblages
    corecore