1,278 research outputs found

    The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems

    Full text link
    We study the influence of a DC bias voltage V on quantum interference corrections to the measured differential conductance in metallic mesoscopic wires and rings. The amplitude of both universal conductance fluctuations (UCF) and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger than the Thouless energy. The enhancement persists even in the presence of inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages electron-phonon collisions lead to the amplitude decaying as a power law for the UCF and exponentially for the ABE. We obtain good agreement of the experimental data with a model which takes into account the decrease of the electron phase-coherence length due to electron-electron and electron-phonon scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in Europhysics Letter

    Amplitude of Aharonov-Bohm oscillations in mesoscopic metallic rings as a function of the DC bias voltage

    Get PDF
    We report measurements of the amplitude of the Aharonov-Bohm oscillations in a mesoscopic diffusive gold ring as a function of the DC bias voltage VDC. The amplitude of the h/e oscillations increases with VDC once the Thouless energy Ec and thermal energy are exceeded, and decreases at higher values of VDC. The increase of the amplitude is interpreted in terms of a superposition of the statistically independent contributions of eVDC/Ec energy intervals, whereas its decrease at high VDC could be attributed to enhanced inelastic scattering processes

    Amplituda Aharonov-Bohmovih oscilacija u mezoskopskim metalnim prstenovima kao funkcija uzbudnog istosmjernog napona

    Get PDF
    We report measurements of the amplitude of the Aharonov-Bohm oscillations in a mesoscopic diffusive gold ring as a function of the DC bias voltage VDC. The amplitude of the h/e oscillations increases with VDC once the Thouless energy Ec and thermal energy are exceeded, and decreases at higher values of VDC. The increase of the amplitude is interpreted in terms of a superposition of the statistically independent contributions of eVDC/Ec energy intervals, whereas its decrease at high VDC could be attributed to enhanced inelastic scattering processes.Izvješćujemo o mjerenjima amplitude Aharonov-Bohmovih oscilacija u mezoskopskom zlatnom difuznom prstenu kao funkcije pobudnog istosmjernog napona VDC. Kad se premaše Thoulessova energija Ec i termička energija, amplituda h/e oscilacija raste s VDC, a opada pri većim VDC. Porast amplitude interpretiramo kao zbrajanje doprinosa statistički neovisnih energijskih intervala eVDC/Ec, dok njezin pad pri većim VDC pripisujemo procesima neelastičnih raspršenja

    Amplituda Aharonov-Bohmovih oscilacija u mezoskopskim metalnim prstenovima kao funkcija uzbudnog istosmjernog napona

    Get PDF
    We report measurements of the amplitude of the Aharonov-Bohm oscillations in a mesoscopic diffusive gold ring as a function of the DC bias voltage VDC. The amplitude of the h/e oscillations increases with VDC once the Thouless energy Ec and thermal energy are exceeded, and decreases at higher values of VDC. The increase of the amplitude is interpreted in terms of a superposition of the statistically independent contributions of eVDC/Ec energy intervals, whereas its decrease at high VDC could be attributed to enhanced inelastic scattering processes.Izvješćujemo o mjerenjima amplitude Aharonov-Bohmovih oscilacija u mezoskopskom zlatnom difuznom prstenu kao funkcije pobudnog istosmjernog napona VDC. Kad se premaše Thoulessova energija Ec i termička energija, amplituda h/e oscilacija raste s VDC, a opada pri većim VDC. Porast amplitude interpretiramo kao zbrajanje doprinosa statistički neovisnih energijskih intervala eVDC/Ec, dok njezin pad pri većim VDC pripisujemo procesima neelastičnih raspršenja

    Bleeding on oral anticoagulants: overview of reversal strategies.

    Get PDF
    Oral anticoagulants (antivitamin K, direct oral anticoagulants) are routinely prescribed for the prevention or treatment of thromboembolic events, and many patients are now on long-term anticoagulant therapy. However, this complicates the management of urgent surgical conditions or major bleeding. Various strategies have been developed to reverse the anticoagulant effect and this narrative review provides an overview of the wide range of therapies currently available

    INTEGRAL detection of hard X-rays from NGC 6334: Nonthermal emission from colliding winds or an AGN?

    Get PDF
    We report the detection of hard X-ray emission from the field of the star-forming region NGC 6334 with the the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The JEM-X monitor and ISGRI imager aboard INTEGRAL and Chandra ACIS imager were used to construct 3-80 keV images and spectra of NGC 6334. The 3-10 keV and 10-35 keV images made with JEM-X show a complex structure of extended emission from NGC 6334. The ISGRI source detected in the energy ranges 20-40 keV and 40-80 keV coincides with the NGC 6334 ridge. The 20-60 keV flux from the source is (1.8+-0.37)*10(-11) erg cm(-2) s(-1). Spectral analysis of the source revealed a hard power-law component with a photon index about 1. The observed X-ray fluxes are in agreement with extrapolations of X-ray imaging observations of NGC 6334 by Chandra ACIS and ASCA GIS. The X-ray data are consistent with two very different physical models. A probable scenario is emission from a heavily absorbed, compact and hard Chandra source that is associated with the AGN candidate radio source NGC 6334B. Another possible model is the extended Chandra source of nonthermal emission from NGC 6334 that can also account for the hard X-ray emission observed by INTEGRAL. The origin of the emission in this scenario is due to electron acceleration in energetic outflows from massive early type stars. The possibility of emission from a young supernova remnant, as suggested by earlier infrared observations of NGC 6334, is constrained by the non-detection of 44Ti lines.Comment: 8 pages, 8 figures, Astronomy and Astrophysics (in press

    Fifteen years of XMM-Newton and Chandra monitoring of Sgr A*: Evidence for a recent increase in the bright flaring rate

    Get PDF
    We present a study of the X-ray flaring activity of Sgr A* during all the 150 XMM-Newton and Chandra observations pointed at the Milky Way center over the last 15 years. This includes the latest XMM-Newton and Chandra campaigns devoted to monitoring the closest approach of the very red Br-Gamma emitting object called G2. The entire dataset analysed extends from September 1999 through November 2014. We employed a Bayesian block analysis to investigate any possible variations in the characteristics (frequency, energetics, peak intensity, duration) of the flaring events that Sgr A* has exhibited since their discovery in 2001. We observe that the total bright-or-very bright flare luminosity of Sgr A* increased between 2013-2014 by a factor of 2-3 (~3.5 sigma significance). We also observe an increase (~99.9% significance) from 0.27+-0.04 to 2.5+-1.0 day^-1 of the bright-or-very bright flaring rate of Sgr A*, starting in late summer 2014, which happens to be about six months after G2's peri-center passage. This might indicate that clustering is a general property of bright flares and that it is associated with a stationary noise process producing flares not uniformly distributed in time (similar to what is observed in other quiescent black holes). If so, the variation in flaring properties would be revealed only now because of the increased monitoring frequency. Alternatively, this may be the first sign of an excess accretion activity induced by the close passage of G2. More observations are necessary to distinguish between these two hypotheses.Comment: Accepted for publication in MNRA

    Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection

    Get PDF
    International audienceThe interplay between influenza A viruses (IAV) and the p53 pathway has been reported in several studies, highlighting the antiviral contribution of p53. Here, we investigated the impact of IAV on the E3-ubiquitin ligase Mdm2, a major regulator of p53, and observed that IAV targets Mdm2, notably via its non-structural protein (NS1), therefore altering Mdm2 stability, p53/Mdm2 interaction and regulatory loop during the time-course of infection. This study also highlights a new antiviral facet of Mdm2 possibly increasing the list of its many p53-independent functions. Altogether, our work contributes to better understand the mechanisms underlining the complex interactions between IAV and the p53 pathway, for which both NS1 and Mdm2 arise as key players

    Element resolved ultrafast demagnetization rates in ferrimagnetic CoDy

    Get PDF
    Femtosecond laser induced ultrafast magnetization dynamics have been studied in multisublattice CoxDy1-x alloys. By performing element and time-resolved X-ray spectroscopy, we distinguish the ultrafast quenching of Co3d and Dy4f magnetic order when the initial temperatures are below (T=150K) or above (T=270K) the temperature of magnetic compensation (Tcomp). In accordance with former element-resolved investigations and theoretical calculations, we observe different dynamics for Co3d and Dy4f spins. In addition we observe that, for a given laser fluence, the demagnetization amplitudes and demagnetization times are not affected by the existence of a temperature of magnetic compensation. However, our experiment reveals a twofold increase of the ultrafast demagnetization rates for the Dy sublattice at low temperature. In parallel, we measure a constant demagnetization rate of the Co3d sublattice above and below Tcomp. This intriguing difference between the Dy4f and Co3d sublattices calls for further theoretical and experimental investigations.Comment: 6 Figure, 2 Table

    Hard X-ray Emission Clumps in the gamma-Cygni Supernova Remnant: an INTEGRAL-ISGRI View

    Get PDF
    Spatially resolved images of the galactic supernova remnant G78.2+2.1 (gamma-Cygni) in hard X-ray energy bands from 25 keV to 120 keV are obtained with the IBIS-ISGRI imager aboard the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The images are dominated by localized clumps of about ten arcmin in size. The flux of the most prominent North-Western (NW) clump is (1.7 +/- 0.4) 10^{-11} erg/cm^2/s in the 25-40 keV band. The observed X-ray fluxes are in agreement with extrapolations of soft X-ray imaging observations of gamma-Cygni by ASCA GIS and spatially unresolved RXTE PCA data. The positions of the hard X-ray clumps correlate with bright patches of optical line emission, possibly indicating the presence of radiative shock waves in a shocked cloud. The observed spatial structure and spectra are consistent with model predictions of hard X-ray emission from nonthermal electrons accelerated by a radiative shock in a supernova interacting with an interstellar cloud, but the powerful stellar wind of the O9V star HD 193322 is a plausible candidate for the NW source as well.Comment: 5 pages, 5 figures, Astronomy and Astrophysics Letter
    corecore