912 research outputs found
Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells
Purpose: A novel system, based on biosensor DNA tethered to a nanoparticle, was developed for the treatment of retinopathy of prematurity. Methods: The construction of a five-layered nanoparticle was visualized with gel electrophoresis. Transcriptionally active PCR products (TAP) containing the biosensor sequence, were bioconjugated to the surface of magnetic nanoparticles yielding biosensor tethered magnetic nanoparticles (MNP). The biosensor was based on an enhanced green fluorescent protein (EGFP) reporter gene driven by an enhanced antioxidant response element ( ARE). Image analysis and flow cytometry were used to characterize MNP delivery and biosensor activity. Results: The MNP penetrated dividing and migrating cells more often than quiescent endothelial cells in a wound-healing in vitro assay. Prussian blue staining demonstrated that more cells have nanoparticle cores than are transfected. When compared to naked TAP alone, MNP transfected more cells in a dose dependent manner. Both the biosensor alone and MNP induce gene expression in the presence of hyperoxia, greater than 1.5 fold over normoxic controls. These data also show that the MNP had a signal to noise ratio of 0.5 greater than the plasmid form of the biosensor as demonstrated by flow cytometry. Conclusions: This approach has the potential to allow the endothelial cells of the retinal vasculature to prevent or treat themselves after hyperoxic insult, rather than systemic treatment to protect or treat only the retina
Construction, gene delivery, and expression of DNA tethered nanoparticles
PURPOSE: Layered nanoparticles have the potential to deliver any number of substances to cells both in vitro and in vivo. The purpose of this study was to develop and test a relatively simple alternative to custom synthesized nanoparticles for use in multiple biological systems, with special focus on the eye. METHODS: The biotin-labeled transcriptionally active PCR products (TAP) were conjugated to gold, semiconductor nanocrystals, and magnetic nanoparticles (MNP) coated with streptavidin. The process of nanoparticle construction was monitored with gel electrophoresis. Fluorescence microscopy followed by image analysis was used to examine gene expression levels from DNA alone and tethered MNP in human hepatoma derived Huh-7 cells. Adult retinal endothelial cells from both dog (ADREC) and human (HREC) sources were transfected with nanoparticles and reporter gene expression evaluated with confocal and fluorescent microscopy. Transmission electron microscopy was used to quantify the concentration of nanoparticles in a stock solution. Nanoparticles were evaluated for transfection efficiency, determined by fluorescence microscopy cell counts. Cells treated with MNP were evaluated for increased reactive oxygen species (ROS) and necrosis with flow cytometry. RESULTS: Both 5' and 3' biotin-labeled TAP bound equally to MNP and there were no differences in functionality between the two tethering orientations. Free DNA was easily removed by the use of magnetic columns. These particles were also able to deliver genes to a human hepatoma cell line, Huh-7, but transfection efficiency was greater than TAP. The semiconductor nanocrystals and MNP had the highest transfection efficiencies. The MNP did not induce ROS formation or necrosis after 48 h of incubation. CONCLUSIONS: Once transfected, the MNP had reporter gene expression levels equivalent to TAP. The nanoparticles, however, had better transfection efficiencies than TAP. The magnetic nanoparticles were the most easily purified of all the nanoparticles tested. This strategy for bioconjugating TAP to nanoparticles is valuable because nanoparticle composition can be changed and the system optimized quickly. Since endothelial cells take up MNP, this strategy could be used to target neovascularization as occurs in proliferative retinopathies. Multiple cell types were used to test this technology and in each the nanoparticles were capable of transfection. In adult endothelial cells the MNP appeared innocuous, even at the highest doses tested with respect to ROS and necrosis. This technology has the potential to be used as more than just a vector for gene transfer, because each layer has the potential to perform its own unique function and then degrade to expose the next functional layer
ESTIMATION OF POTENTIAL RISK OF ACL RUPTURE IN FEMALE SOCCER PLAYERS AND EFFECTIVENESS OF A PREVENTION TRAINING PROGRAM
The purpose of this study was to make an estimation of the potential risk of ACL rupture in female soccer players by means of video based analysis and controlled by biome-chanical testing as well as to relate to effects by carrying out an 8 week specific training program. Results show that video based screening seems to be suitable in order to achieve a good estimation of the risk for ACL injuries without large expenditure. The per-formed ACL prevention training program shows a slight reduction of the potential risk of ACL rupture
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
PTPN11 mutations are not responsible for the Cardiofaciocutaneous (CFC) syndrome
Cardiofaciocutaneous (CFC) syndrome is a multiple congenital anomalies/mental retardation syndrome characterized by congenital heart defects, characteristic facial appearance, short stature, ectodermal abnormalities and mental retardation. It was described in 1986, and to date is of unknown genetic etiology. All reported cases are sporadic, born to non-consanguineous parents and have apparently normal chromosomes. Noonan and Costello syndromes remain its main differential diagnosis. the recent finding of PTPN11 missense mutations in 45-50% of the Noonan patients studied with penetrance of almost 100% and the fact that in animals mutations of this gene cause defects of semilunar valvulogenesis, made PTPN11 mutation screening in CFC patients a matter of interest. We sequenced the entire coding region of the PTPN11 gene in ten well-characterised CFC patients and found no base changes. We also studied PTPN11 cDNA in our patients and demonstrated that there are no interstitial deletions either. the genetic cause of CFC syndrome remains unknown, and PTPN11 can be reasonably excluded as a candidate gene for the CFC syndrome, which we regard as molecular evidence that CFC and Noonan syndromes are distinct genetic entities.Univ Sacred Heart, Ist Genet Med, I-00168 Rome, ItalyUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilWeb of Scienc
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Recommended from our members
CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation
Particulate ligands including cholesterol crystals and amyloid fibrils induce NLRP3-dependent production of interleukin-1β (IL-1β) in atherosclerosis, Alzheimer's disease and diabetes. Soluble endogenous ligands including oxidized-LDL, amyloid-β and amylin peptides accumulate in these diseases. Here we identify a CD36-mediated endocytic pathway that coordinates the intracellular conversion of these soluble ligands to crystals or fibrils, resulting in lysosomal disruption and NLRP3-inflammasome activation. Consequently, macrophages lacking CD36 failed to elicit IL-1β production in response to these ligands and targeting CD36 in atherosclerotic mice reduced serum IL-1β and plaque cholesterol crystal accumulation. Collectively, these findings highlight the importance of CD36 in the accrual and nucleation of NLRP3 ligands from within the macrophage and position CD36 as a central regulator of inflammasome activation in sterile inflammation
- …
