261 research outputs found

    Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Get PDF
    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and long wave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change

    Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Get PDF
    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and long wave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change

    Climatic controls of aboveground net primary production in semi‑arid grasslands along a latitudinal gradient portend low sensitivity to warming

    Get PDF
    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary production (ANPP) in most grasslands. Conversely, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to warming is a challenge, and raises the question: how sensitive will grassland ANPP be to warming? We evaluated climate and multi-year ANPP data (67 years) from eight western US grasslands arrayed along mean annual temperature (MAT; ~7–14 °C) and mean annual precipitation (MAP; ~250–500 mm) gradients. We used regression and analysis of covariance to assess relationships between ANPP and temperature, as well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. We also related ANPP to the standardized precipitation evaporation index (SPEI), which combines precipitation and evapotranspiration to better represent moisture available for plant growth. Regression models indicated that variation in growing season temperature was negatively related to total and graminoid ANPP, but precipitation was a stronger predictor than temperature. Growing season temperature was also a significant parameter in more complex models, but again precipitation was consistently a stronger predictor of ANPP. Surprisingly, neither annual nor growing season SPEI were as strongly related to ANPP as precipitation. We conclude that forecasted warming likely will affect ANPP in these grasslands, but that predicting temperature effects from natural climatic gradients is difficult. This is because, unlike precipitation, warming effects can be positive or negative and moderated by shifts in the C3/C4 ratios of plant communities

    Managing Invasive Plants on Great Plains Grasslands: A Discussion of Current Challenges

    Get PDF
    The Great Plains of North America encompass approximately 1,300,000 km2 of land from Texas to Saskatchewan. The integrity of these lands is under continual assault by long-established and newly-arrived invasive plant species, which can threaten native species and diminish land values and ecological goods and services by degrading desired grassland resources. The Great Plains are a mixture of privately and publicly owned lands, which leads to a patchwork of varying management goals and strategies for controlling invasive plants. Continually updated knowledge is required for efficient and effective management of threats posed by changing environments and invasive plants. Here we discuss current challenges, contemporary management strategies, and management tools and their integration, in hopes of presenting a knowledge resource for new and experienced land managers and others involved in making decisions regarding invasive plant management in the Great Plains

    Managing Invasive Plants on Great Plains Grasslands: A Discussion of Current Challenges

    Get PDF
    The Great Plains of North America encompass approximately 1,300,000 km2 of land from Texas to Saskatchewan. The integrity of these lands is under continual assault by long-established and newly-arrived invasive plant species, which can threaten native species and diminish land values and ecological goods and services by degrading desired grassland resources. The Great Plains are a mixture of privately and publicly owned lands, which leads to a patchwork of varying management goals and strategies for controlling invasive plants. Continually updated knowledge is required for efficient and effective management of threats posed by changing environments and invasive plants. Here we discuss current challenges, contemporary management strategies, and management tools and their integration, in hopes of presenting a knowledge resource for new and experienced land managers and others involved in making decisions regarding invasive plant management in the Great Plains

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Decoupled diversity dynamics in green and brown webs during primary succession in a salt marsh

    Get PDF
    1.Terrestrial ecosystems are characterised by a strong functional connection between the green (plant-herbivore-based) and brown (detritus-detritivore-based) parts of the food web, which both develop over successional time. However, the interlinked changes in green and brown food web diversity patterns in relation to key ecosystem processes are rarely studied. 2.Here, we demonstrate changes in species richness, diversity and evenness over a wide range of invertebrate green and brown trophic groups during 100 years of primary succession in a salt marsh ecosystem, using a well-calibrated chronosequence. 3.We contrast two hypotheses on the relationship between green and brown food web diversity across succession: i) ‘coupled diversity hypothesis’, which predicts that all trophic groups covary similarly with the main drivers of successional ecosystem assembly versus ii) the ‘decoupled diversity hypothesis’, where green and brown trophic groups diversity respond to different drivers during succession. 4.We found that, while species richness for plants and invertebrate herbivores (green web groups) both peaked at intermediate productivity and successional age, the diversity of macro-detritivores, microarthropod microbivores and secondary consumers (brown web groups) continuously increased towards the latest successional stages. These results suggest that green web trophic groups are mainly driven by vegetation parameters, such as the amount of bare soil, vegetation biomass production, and vegetation height, while brown web trophic groups are mostly driven by the production and standing stock of dead organic material and soil development. 5.Our results show that plant diversity cannot simply be used as a proxy for the diversity of all other species groups that drive ecosystem functioning, as brown and green diversity components in our ecosystem responded differently to successional gradients
    • …
    corecore