169 research outputs found

    The Human Genomic Melting Map

    Get PDF
    In a living cell, the antiparallel double-stranded helix of DNA is a dynamically changing structure. The structure relates to interactions between and within the DNA strands, and the array of other macromolecules that constitutes functional chromatin. It is only through its changing conformations that DNA can organize and structure a large number of cellular functions. In particular, DNA must locally uncoil, or melt, and become single-stranded for DNA replication, repair, recombination, and transcription to occur. It has previously been shown that this melting occurs cooperatively, whereby several base pairs act in concert to generate melting bubbles, and in this way constitute a domain that behaves as a unit with respect to local DNA single-strandedness. We have applied a melting map calculation to the complete human genome, which provides information about the propensities of forming local bubbles determined from the whole sequence, and present a first report on its basic features, the extent of cooperativity, and correlations to various physical and biological features of the human genome. Globally, the melting map covaries very strongly with GC content. Most importantly, however, cooperativity of DNA denaturation causes this correlation to be weaker at resolutions fewer than 500 bps. This is also the resolution level at which most structural and biological processes occur, signifying the importance of the informational content inherent in the genomic melting map. The human DNA melting map may be further explored at http://meltmap.uio.no

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    A sequence variant associating with educational attainment also affects childhood cognition

    Get PDF
    Only a few common variants in the sequence of the genome have been shown to impact cognitive traits. Here we demonstrate that polygenic scores of educational attainment predict specific aspects of childhood cognition, as measured with IQ. Recently, three sequence variants were shown to associate with educational attainment, a confluence phenotype of genetic and environmental factors contributing to academic success. We show that one of these variants associating with educational attainment, rs4851266-T, also associates with Verbal IQ in dyslexic children (P=4.3 x 10(-4), beta=0.16 s.d.). The effect of 0.16 s.d. corresponds to 1.4 IQ points for heterozygotes and 2.8 IQ points for homozygotes. We verified this association in independent samples consisting of adults (P=8.3 x 10(-5), beta=0.12 s.d., combined P=2.2 x 10(-7), beta=0.14 s.d.). Childhood cognition is unlikely to be affected by education attained later in life, and the variant explains a greater fraction of the variance in verbal IQ than in educational attainment (0.7% vs 0.12%,. P=1.0 x 10(-5))

    A sequence variant associating with educational attainment also affects childhood cognition

    Get PDF
    Only a few common variants in the sequence of the genome have been shown to impact cognitive traits. Here we demonstrate that polygenic scores of educational attainment predict specific aspects of childhood cognition, as measured with IQ. Recently, three sequence variants were shown to associate with educational attainment, a confluence phenotype of genetic and environmental factors contributing to academic success. We show that one of these variants associating with educational attainment, rs4851266-T, also associates with Verbal IQ in dyslexic children (P=4.3 x 10(-4), beta=0.16 s.d.). The effect of 0.16 s.d. corresponds to 1.4 IQ points for heterozygotes and 2.8 IQ points for homozygotes. We verified this association in independent samples consisting of adults (P=8.3 x 10(-5), beta=0.12 s.d., combined P=2.2 x 10(-7), beta=0.14 s.d.). Childhood cognition is unlikely to be affected by education attained later in life, and the variant explains a greater fraction of the variance in verbal IQ than in educational attainment (0.7% vs 0.12%,. P=1.0 x 10(-5))

    On the sources of the height–intelligence correlation: New insights from a bivariate ACE model with assortative mating

    Get PDF
    A robust positive correlation between height and intelligence, as measured by IQ tests, has been established in the literature. This paper makes several contributions toward establishing the causes of this association. First, we extend the standard bivariate ACE model to account for assortative mating. The more general theoretical framework provides several key insights, including formulas to decompose a cross-trait genetic correlation into components attributable to assortative mating and pleiotropy and to decompose a cross-trait within-family correlation. Second, we use a large dataset of male twins drawn from Swedish conscription records and examine how well genetic and environmental factors explain the association between (i) height and intelligence and (ii) height and military aptitude, a professional psychogologist’s assessment of a conscript’s ability to deal with wartime stress. For both traits, we find suggestive evidence of a shared genetic architecture with height, but we demonstrate that point estimates are very sensitive to assumed degrees of assortative mating. Third, we report a significant within-family correlation between height and intelligence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(ρ^=0.10),(\hat{\rho}=0.10),\end{document} suggesting that pleiotropy might be at play
    corecore