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Abstract Greater height and higher intelligence test

scores are predictors of better health outcomes. Here, we

used molecular (single-nucleotide polymorphism) data to

estimate the genetic correlation between height and general

intelligence (g) in 6,815 unrelated subjects (median age 57,

IQR 49–63) from the Generation Scotland: Scottish Family

Health Study cohort. The phenotypic correlation between

height and g was 0.16 (SE 0.01). The genetic correlation

between height and g was 0.28 (SE 0.09) with a bivariate

heritability estimate of 0.71. Understanding the molecular

basis of the correlation between height and intelligence may

help explain any shared role in determining health out-

comes. This study identified a modest genetic correlation

between height and intelligence with the majority of the

phenotypic correlation being explained by shared genetic

influences.
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Background

Evidence from observational studies suggests that better

cognitive performance (as assessed by IQ-type tests) is

associated with better health outcomes and lower mortality

risk (Calvin et al. 2011; Deary et al. 2010; Whalley and

Deary 2001). Greater height is also associated with a lower

risk of a series of health outcomes including coronary heart

disease, stroke, accidents and suicide (Batty et al. 2009;

Lee et al. 2009; Paajanen et al. 2010; Whitley et al. 2010).
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Height and intelligence are positively correlated (Gale

2005), with r typically between 0.10 and 0.20 (Keller et al.

2013). Both traits are partly heritable: behaviour genetic

studies, mostly using twin samples, provide narrow sense

heritability estimates of 70–90 % for height (Macgregor

et al. 2006; Silventoinen et al. 2003) and 40–70 % for

intelligence (Calvin et al. 2012; Haworth et al. 2010). More

recently, molecular-based studies indicate that about 45 %

of the variation in height (Yang et al. 2010) and 25–50 %

of the variance in intelligence (Benyamin et al. 2013;

Davies et al. 2011) can be explained by additive effects of

common single nucleotide polymorphisms (SNPs). How-

ever, to date, genetic correlations between height and

intelligence have been calculated using only twin or family

based data, in which relatedness is defined via pedigree

information. They indicate varying estimates of the height-

intelligence genetic correlation that range between 0.08

and 0.30 (Beauchamp et al. 2011; Keller et al. 2013; Sil-

ventoinen et al. 2006; Sundet et al. 2005). Whereas the

benefits of the twin approach include testing for pleiotropic

and assortative mating contributions to the correlation

(Keller et al. 2013), and the opportunity to incorporate rare

variants and non-additive genetic variation, drawbacks

include the equal environments assumption (that is, there is

no differential environment for monozygotic and dizygotic

twins) and an inability to target specific causal variants and

molecular pathways.

Here, we used a molecular genetic approach to examine

the genetic correlation between height and intelligence in a

large sample of unrelated adults. The method applied

investigates phenotypic similarities in genetically similar

(based on molecular level SNP data) unrelated individuals.

Methods

Generation Scotland: the Scottish Family Health Study

(GS:SFHS) is a family structured, population-based cohort

study (Smith et al. 2006, 2012). A full description of the

study is provided elsewhere (Smith et al. 2006, 2012;

www.generationscotland.org/). In brief, over 24,000 par-

ticipants were recruited between 2006 and 2011. Probands

(n = 7,953) were aged between 35 and 65 years and were

registered with participating general medical practitioners

(GPs) in the Glasgow, Tayside, Ayrshire, Arran, and

North-East regions of Scotland. These individuals were not

ascertained on the basis of having any particular disorder.

Their family members were also recruited to yield the full

study sample.

Genotyping Sample

Genome-wide data were collected on a sub-sample of

10,000 participants using the Illumina HumanOmniEx-

pressExome-8 v1.0 DNA Analysis BeadChip and Infinium

chemistry (Gunderson 2009). Blood samples (or saliva

from postal and a few clinical participants) from GS:SFHS

participants were collected, processed and stored using

standard operating procedures and managed through a

laboratory information management system at the Well-

come Trust Clinical Research Facility Genetics Core,

Edinburgh (Kerr et al. 2013). The yield of DNA was

measured using picogreen and normalised to 50 ng/ll

before genotyping. The arrays were imaged on an Illumina

HiScan platform and genotypes were called automatically

using GenomeStudio Analysis software v2011.1. After

quality control, there were a total of 594,824 SNPs avail-

able for analysis on 9,863 individuals, which included

family trios and quads in addition to unrelated participants.

A genetic threshold of 0.025 (between second and third

cousins) was used to remove potential shared environment

effects (Yang et al. 2010, 2011). This left an unrelated

sample size of 6,815. SNPs with a MAF below 1 % were

excluded prior to the analysis.

Ethics Statement

All components of GS:SFHS received ethical approval

from the NHS Tayside Committee on Medical Research

Ethics (REC Reference Number: 05/S1401/89). GS:SFHS

has also been granted Research Tissue Bank status by the

Tayside Committee on Medical Research Ethics (REC

Reference Number: 10/S1402/20), providing generic ethi-

cal approval for a wide range of uses within medical

research.

Cognition and Height

General intelligence was assessed by extracting the first,

unrotated principal component from four cognitive tests

that measured processing speed (Wechsler digit symbol

substitution task—DST; Wechsler 1998a), verbal declara-

tive memory (Wechsler logical memory test—LM; sum of

immediate and delayed recall of one paragraph; Wechsler

1998b), executive function (verbal fluency test—VFT;

using the letters C, F, and L, each for 1 min; Lezak 1995),

and vocabulary (the Mill Hill vocabulary scale—MHVS;

junior and senior synonyms combined; Raven et al. 1977).
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This component, which we label g, explained 45 % of the

variance of the four tests, each of which loaded strongly on

the component (0.64–0.72). These loadings represent the

weight that each individual’s (standardised) cognitive test

scores needs to be multiplied by in order to obtain their g

score.

Height was measured during clinical examination by

asking each participant to remove their shoes and to stand

(i) as erectly as possible with their back and shoulders

against the freestanding measurement device, (ii) with

heels together and feet angled at about 60�, and (iii) with

head held in the Frankfort horizontal plane, where the

inferior border of the bony orbit is in line with the groove

at the top of the tragus of the ear. Height to the nearest half

centimetre was then measured during quiet breathing, with

the horizontal arm of the measuring unit being kept at a

rigid right angle to the scale.

Statistical Analyses

Age-, sex-, and population stratification-adjusted residuals

for both g and height were computed by linear regression.

The number of ancestry components was determined by

comparing the log-likelihoods and residual errors from

linear regression models of the traits on age, sex, and up to

20 principal components (Supplementary Fig. 1). Based on

these results, we adjusted for 14 components, which

accounted for 1.0 % of the variance in g, and 0.8 % of the

variance in height.

The residual values were carried forward to the genome-

wide complex trait analyses—GCTA (Yang et al. 2010,

2011). Initially, univariate models were run for each trait to

investigate the proportion of phenotypic variance that is

explained by common genetic variants and variants that are

in high linkage disequilibrium with them. The univariate

GCTA estimates for g have been reported previously

(Marioni et al., in press). Bivariate GCTA models (Lee

et al. 2012) were then run to obtain estimates of the genetic

correlation and bivariate heritability between height and g.

Results

Descriptive details of the genotyped Generation Scotland

cohort and the analysis cohort of unrelated study members

are presented in Table 1. The median age of the genotyped

cohort was 54 years (IQR 43–62), and 59 % of participants

were female. As anticipated, men (mean height 176 cm

[SD 7]) were taller than women (mean height 162 cm

[SD 7]). The age- and sex-adjusted phenotypic correlation

between height and g was 0.16 (SE 0.01). The unrelated

subjects are representative of the full genotyped cohort,

with negligible differences in the summary information.

The univariate and bivariate GCTA results are presented

in Table 2, with full output in Supplementary Tables I and

II. The proportion of variance in the traits that was

explained by the common SNPs was 0.58 (SE 0.05) for

height, and 0.28 (SE 0.05) for g.

The genetic correlation for height and g was 0.28 (SE 0.09).

Bivariate heritability estimates indicated that the majority

(71 %) of the phenotypic correlation between height and g

was explained by common additive genetic variants.

Discussion

In this study we found a moderate and statistically significant

genetic correlation between height and general intelligence,

g. Whereas the phenotypic correlation between these mea-

sures was small (*0.16), the bulk of this correlation can be

explained by common additive genetic variants, and variants

in linkage disequilibrium with them.

Table 1 Characteristics of the

genotyped Generation Scotland

cohort study members

a Median (quartiles)
b n (%)

Variable Genotyped cohort Unrelated genotyped cohort

n Mean (SD) n Mean (SD)

Demographics

Age (years) 10,000 54a 43–62 6,815 57a 49–63

Sex—female 10,000 5,864b 59 6,815 4,002b 59

Height (cm) (n = 9,969)

Female 5,843 162 7 3,987 162 6

Male 4,126 176 7 2,805 175 7

Cognitive

Digit symbol test 9,862 70.2 17.2 6,718 68.4 16.8

Verbal fluency 9,883 40.5 12.0 6,736 41.0 12.2

Logical memory 9,880 30.7 8.0 6,731 30.3 7.9

Mill Hill vocabulary scale 9,824 30.8 4.6 6,694 31.2 4.7
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The main limitation of our analysis compared to previously

reported findings from twin and family based data (Beau-

champ et al. 2011; Keller et al. 2013; Silventoinen et al. 2006;

Sundet et al. 2005) is its inability to determine the degree to

which the correlation depends on assortative mating versus

pleiotropy (Keller et al. 2013). In their study, Keller et al.

(2013) used a bivariate nuclear twin family study design;

however, there is no obvious analogue to such an approach for

molecular level data. A further limitation of the model is that it

only considered common variants (MAF [ 1 %) and additive

effects. This does not bias the estimate of the genetic corre-

lation (Trzaskowski et al. 2013) but does result in lower

univariate estimates for the traits compared to the corre-

sponding figures from twin studies, which include non-addi-

tive genetic effects and the influence of rare variants.

The primary advantage of our analysis is that we can

quantify the common additive SNP contribution to the

phenotypic correlation and the overlap of these SNP effects

on the variance explained in each of the two traits. Such an

approach determines the molecular signal size and is the

start to understanding the underlying biology of the genetic

correlation. Other strengths include the large sample size,

which is essential for calculating precise genetic correla-

tion estimates; the phenotypic measure of g, which was

derived from a battery of four cognitive tests; and the

ethnic homogeneity of the Generation Scotland sample.

The findings from our molecular genetic study are in

accordance with those reported in previous twin and family

based analyses, where estimates of the height-cognition

genetic correlation vary between 0.20 and 0.35 (Beau-

champ et al. 2011; Silventoinen et al. 2006; Sundet et al.

2005). However, the most recent study in this area pre-

sented more modest genetic correlations of 0.08 for men,

and 0.17 for women in a population of around 8,000 sub-

jects from nearly 3,000 families (Keller et al. 2013). Rea-

sons for cross-cohort differences have been reported by

Keller et al. (2013) and may include birth cohort effects

that are related to nutritional differences, childhood infec-

tions, and social circumstances.

Understanding the genetic correlation between height and

IQ is important in life-course research as both traits have been

described as predictors of health outcomes and mortality.

Short stature has been linked to cardiovascular disease risk

(Paajanen et al. 2010), and numerous other health outcomes

(Batty et al. 2009; Lee et al. 2009; Whitley et al. 2010).

Higher IQ has been linked to lower mortality risk, in addition

to a decreased risk of a host of health outcomes such as

coronary heart disease, stroke, accidents, and suicide (Calvin

et al. 2011; Deary et al. 2010; Whalley and Deary 2001).

There is also a complex interplay between height and intel-

ligence and their role in both development and late-life age-

ing. Cognitive change from age 11 to 79 years has been

shown to predict height loss between ages 79 and 87 years

(Starr et al. 2010). The reason for the intelligence-health

relation is not fully understood. One of several non-exclusive

possibilities is that height and intelligence are both markers of

‘system integrity’ (Deary 2012). The present phenotypic and

genetic correlation between them provides partial support for

that suggestion. Further research should examine whether

their shared genetic variation is associated with health out-

comes, and seek to identify the molecular mechanisms.

In conclusion, we found a moderate molecular genetic

correlation between height and intelligence. Furthermore,

the majority of the phenotypic correlation between the

traits can be explained by shared genetic influences.
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