285 research outputs found

    Resource Availability and Entrainment Are Driven by Offsets Between Nutriclines and Winter Mixed‐Layer Depth

    Get PDF
    While phytoplankton play a key role in ocean biogeochemical cycles, the availability and supply pathways of resources that support their growth remain poorly constrained. Here, we show that the availability of various resources varies over several orders of magnitude throughout the Atlantic Ocean, causing regional contrasts in resource deficiency. Regional variations in the relative availability of nitrogen, phosphorous, silicon, iron, zinc, manganese, cobalt, and cadmium are important and result from the contrasts between winter mixing depths and differences in vertical profiles of the different resources. The winter-time thickening of the mixed layer may replenish or deplete resources via entrainment, depending on the vertical nutrient profile. For nutrients like nitrate, phosphate, and cadmium, entrainment is a consistent source term. While for others, such as manganese and iron, entrainment can reduce ocean resource availability, particularly in subtropical regions. Any future change to the depth of winter-time mixing will cause region-specific changes in relative availability of different resources that may have important ecological consequences

    Estimation of the atmospheric flux of nutrients and trace metals to the Eastern Tropical North Atlantic Ocean

    Get PDF
    Atmospheric deposition contributes potentially significant amounts of the nutrients iron, nitrogen and phosphorus (via mineral dust and anthropogenic aerosols) to the oligotrophic tropical North Atlantic Ocean. Transport pathways, deposition processes and source strengths contributing to this atmospheric flux are all highly variable in space and time. Atmospheric sampling was conducted during 28 research cruises through the Eastern Tropical North Atlantic (ETNA) over a 12 year period and a substantial dataset of measured concentrations of nutrients and trace metals in aerosol and rainfall over the region was acquired. This database was used to quantify (on a spatial- and seasonal-basis) the atmospheric input of ammonium, nitrate, soluble phosphorus and soluble and total iron, aluminium and manganese to the ETNA. The magnitude of atmospheric input varies strongly across the region, with high rainfall rates associated with the Inter-tropical Convergence Zone contributing to high wet deposition fluxes in the south, particularly for soluble species. Dry deposition fluxes of species associated with mineral dust exhibited strong seasonality, with highest fluxes associated with winter-time low-level transport of Saharan dust. Overall (wet plus dry) atmospheric inputs of soluble and total trace metals were used to estimate their soluble fractions. These also varied with season and were generally lower in the dry north than in the wet south. The ratio of ammonium plus nitrate to soluble iron in deposition to the ETNA was lower than the N:Fe requirement for algal growth in all cases, indicating the importance of the atmosphere as a source of excess iron

    Pathways of Superoxide (O2-) decay in the Eastern Tropical North Atlantic

    Get PDF
    Superoxide (O2-: IUPAC name dioxide (•1−)) is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2- throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design, to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied 6 stations, 2 on the West African continental shelf and 4 open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that in the surface ocean, impacted by Saharan aerosols and sediment resuspension, the main decay pathways for superoxide is via reactions with Mn(II) and organic matter

    Size-fractionated labile trace elements in the Northwest Pacific and Southern Oceans

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 126 (2011): 108-113, doi:10.1016/j.marchem.2011.04.004.Photosynthesis by marine phytoplankton requires bioavailable forms of several trace elements that are found in extremely low concentrations in the open ocean. We have compared the concentration, lability and size distribution (< 1 nm and < 10 nm) of a suite of trace elements that are thought to be limiting to primary productivity as well as a toxic element (Pb) in two High Nutrient Low Chlorophyll (HNLC) regions using a new dynamic speciation technique, Diffusive Gradients in Thin-film (DGT). The labile species trapped within the DGT probes have a size that is smaller or similar than the pore size of algal cell walls and thus present a proxy for bioavailable species. Total Dissolvable trace element concentrations (TD concentration) varied between 0.05 nM (Co) and 4.0 nM (Ni) at K2 (Northwest Pacific Ocean) and between 0.026 nM (Co) and 4.7 nM (Ni) in the Southern Ocean. The smallest size fractionated labile concentrations (< 1 nm) observed at Southern Ocean sampling stations ranged between 0.002 nM (Co) and 2.1 nM (Ni). Moreover, large differences in bioavailable fractions (ratio of labile to TD concentration) were observed between the trace elements. In the Northwest Pacific Ocean Fe, Cu and Mn had lower labile fractions (between 10 and 44%) than Co, Cd, Ni and Pb (between 80 and 100%). In the Southern Ocean a similar trend was observed, and in addition: (1) Co, Cd, Ni and Pb have lower labile fractions in the Southern Ocean than in the Northwest Pacific and (2) the ratios of <1nm to dissolvable element concentrations at some Southern Ocean stations were very low and varied between 4 and16 %.This research was supported by Federal Science Policy Office, Brussels, through contracts EV/03/7A, SD/CA/03A, the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as for K2, the VERTIGO program funding primarily by the US National Science Foundation programs in Chemical and Biological Oceanograph

    The effect of pH, aluminum, and chelator manipulations on the growth of acidic and circumneutral species of Asterionella

    Full text link
    The growth rates of two diatoms, acidophilic Asterionella ralfsii and circumneutral A. formosa , were differentially affected by varying pH, Al, and EDTA in chemically defined media. Free Al ion concentration increased as pH and EDTA concentration decreased. Free trace metal ion concentration decreased as EDTA levels increased but increased by orders of magnitude upon addition of Al. pH had an overriding species specific effect on growth rate; at low pH A. ralfsii had higher growth rates than A. formosa and vice versa at high pH. For both species higher EDTA levels depressed growth rates. Moderate additions of Al generally resulted in growth stimulation. The growth rate stimulations, especially at 200 and 400 μg L −1 Al additions, correlate to increases in free trace metal ion concentrations. The EDTA-AI interaction effects on growth rate were both pH and concentration dependent: at pH 7 both species were stimulated by addition of Al at all EDTA levels (except A. ralfsii at 5.0 mM EDTA and A. formosa at 0.5 mNM EDTA); at pH 6 Al addition either stimulated or had no effect on the growth rates of both species (except at low EDTA and high Al levels); at pH 5 A. formosa did not grow and additions of 200 μg L −1 Al stimulated growth of A. ralfsii . It is likely that the effect of pH, Al, and EDTA on speciation of essential or toxic trace metals affects growth rates of these diatoms in a species specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43905/1/11270_2004_Article_BF00282626.pd

    High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L23609, doi:10.1029/2011GL049712.The vast Antarctic sea-ice zone (SIZ) is a potentially significant source of the climate-active gas dimethylsulfide (DMS), yet few data are available on the concentrations and turnover rates of DMS and the related compounds dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) in sea ice environments. Here we present new measurements characterizing the spatial variability of DMS, DMSP, and DMSO concentrations across the Antarctic SIZ, and results from tracer experiments quantifying the production rates of DMS from various sources. We observed extremely high concentrations (>200 nM) and turnover rates (>100 nM d−1) of DMS in sea-ice brines, indicating intense cycling of DMS/P/O. Our results demonstrate a previously unrecognized role for DMSO reduction as a major pathway of DMS production in Antarctic sea ice.This work was supported in part by Woods Hole Oceanographic Institution’s Ocean Life Institute and by NSF grant ANT-0838872 to KRA.2012-06-1

    Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability

    Get PDF
    Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron-limitation of Prochlorococcus cell division rates in these regions has been demonstrated. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady-state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially-expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Biological Oceanography)United States. Office of Naval Research (ONR Young Investigator Award)National Science Foundation (U.S.) (Chemical Oceanography)National Science Foundation (U.S.) (Environmental Genomics grants

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Processes and patterns of oceanic nutrient limitation

    Get PDF
    Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry. © 2013 Macmillan Publishers Limited. All rights reserved

    Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere

    Get PDF
    Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models
    corecore