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ABSTRACT  28 

Photosynthesis by marine phytoplankton requires bioavailable forms of several trace 29 

elements that are found in extremely low concentrations in the open ocean.  We have 30 

compared the concentration, lability and size distribution (< 1 nm and < 10 nm) of a suite  31 

of trace elements that are thought to be limiting to primary productivity as well as a toxic 32 

element (Pb) in two High Nutrient Low Chlorophyll (HNLC) regions using a new 33 

dynamic speciation technique, Diffusive Gradients in Thin-film (DGT). The labile 34 

species trapped within the DGT probes have a size that is smaller or similar than the pore 35 

size of algal cell walls and thus present a proxy for bioavailable species.   36 

Total Dissolvable trace element concentrations (TD concentration) varied between 0.05 37 

nM (Co) and 4.0 nM (Ni) at K2 (Northwest Pacific Ocean) and between 0.026 nM (Co) 38 

and 4.7 nM (Ni) in the Southern Ocean. The smallest size fractionated labile 39 

concentrations (< 1 nm) observed at Southern Ocean sampling stations ranged between 40 

0.002 nM (Co) and 2.1 nM (Ni). Moreover, large differences in bioavailable fractions 41 

(ratio of labile to TD concentration) were observed between the trace elements. In the 42 

Northwest Pacific Ocean Fe, Cu and Mn had lower labile fractions (between 10 and 44%) 43 

than Co, Cd, Ni and Pb (between 80 and 100%). In the Southern Ocean a similar trend 44 

was observed, and in addition: (1) Co, Cd, Ni and Pb have lower labile fractions in the 45 

Southern Ocean than in the Northwest Pacific and (2) the ratios of <1nm to dissolvable 46 

element concentrations at some Southern Ocean stations were very low and varied 47 

between 4 and16 %.  48 
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INTRODUCTION 57 

In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton 58 

leads to formation of ~45 gigatons of organic carbon (C) per annum, of which ~11 59 

gigatons are exported to the ocean interior (Laws et al., 2000). To sustain this C flux 60 

through marine ecosystems, essential elements must be supplied in a ratio reflecting the 61 

composition of marine phytoplankton species. The role of some of these essential trace 62 

elements has been summarized by Morel et al. (2003) and Morel and Price (2003) for 63 

example, of Co, Cd and Zn in carbon dioxide acquisition, Fe and Mn in carbon fixation, 64 

Zn, Cd and Se in silica uptake, Fe and Mo in  fixation and Fe, Cu and Ni in organic N 65 

utilization.   66 

In most areas of the oceans, the concentrations of essential trace elements are 67 

extremely low. Moreover, these elements are present in different chemical forms such as 68 

free ionic, labile bound and strongly bound to organic ligands, and different sizes, such as 69 

truly soluble through  colloidal (nominally >1000 kDa to <0.2 µm) to particulate (>0.2 70 

µm). Not all of these forms are accessible to phytoplankton. To cross the phytoplankton 71 

cell membrane they need to be small (Carpita et al., 1979; Zhang and Davision, 2000; 72 

Zemke-White et al., 2000) and in free ionic or labile bound forms (Davison and Zhang, 73 

1994; Morel and Price, 2003). It is thus important to assess the small and labile fraction 74 

of those essential trace elements in the dissolved phase because they are the most 75 

bioavailable.   76 

Techniques which enable estimation of the labile metal fraction in the ocean are 77 

DGT, electrochemical stripping techniques such as ASV, CSV and chronopotentiometry 78 

or ion exchange methods (e.g. Buckley and van den Berg, 1986; Davison and Zhang, 79 
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1994; Zhang and Davison, 2000; Twiss and Moffett, 2002). The DGT device consists of a 80 

double layer system, with the diffusive gel layer (controlling the mass transport) on top of 81 

a Chelex-100 resin gel layer (acting as a sink for metals). According to Zhang and 82 

Davison (2000) and Twiss and Moffett (2002), the difference between DGT and Anodic 83 

Stripping Voltammetry is that DGT contains a thicker diffusion layer allowing more 84 

dissociation of labile complexes and also allowing the choice of an appropriate sampling 85 

time scale. DGT devices are also easier to handle and more robust at sea than 86 

voltammetric instruments.   87 

The polyacrylamide gels used in DGT devices allow free diffusion of metal ions 88 

and metal-ligand complexes, but the latter are limited by their size. The pore size of the 89 

gels is not exactly known, but the diffusion of metal complexes with fulvic and humic 90 

acid indicates nominal pore sizes for Open-Pored DGT gels of ~10 nm and for 91 

Restricted-Pored DGT gels of ~1 nm. In both cases, inorganic and organic metal 92 

complexes which are less stable than the metal-Chelex bond dissociate during their 93 

transport in the gel, and are bound by the Chelex resin (Figure 2). The fact that (1) the 94 

dimensions of the species measured by the DGT are smaller than or equal to the pore 95 

sizes of the cell walls of algae (Carpita et al., 1979; Zhang and Davision, 2000; Zemke-96 

White et al., 2000) and (2) that only labile species were measured (Davison and Zhang, 97 

1994) gives confidence that these species are most probable bioavailable species to algae. 98 

In fact, an in depth study by Zhang and Davison (2000) showed that if a measurement is 99 

made with an open-pored gel (in our paper indicated as < 10 nm pore size), both 100 

inorganic and organic labile complexes are measured. When membrane transport is slow, 101 

the concentration of the free ion in solution determines the rate of uptake (Campbell, 102 
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1995). However, with fast membrane transport, uptake is governed by the product of the 103 

concentration of each species and their diffusion coefficient. This is exactly what DGT 104 

measures directly with the open-pored gel, as it is a physical surrogate of fast membrane 105 

transport. This type of DGT measurement therefore provides, directly, the effective 106 

bioavailable metal concentration for the worst possible biological situation of fast 107 

membrane transport.  A measurement with a restricted gel (in our paper indicated as < 1 108 

nm pore size) provides a reasonable estimate of the inorganic labile species 109 

concentration.  110 

In this work the DGT results were compared to the Total Dissolvabled (TD) 111 

element fraction in an unfiltered, acidified sample (1 mL nitric acid to 500 mL sample), 112 

following extraction with diethyldithiocarbamate in freon at a pH of 5, and analysed by 113 

inductively coupled plasma - mass spectrometry (ICP-MS). This TD fraction also 114 

includes labile trace metals associated with particulates. 115 

 116 

METHODS AND MATERIALS. 117 

SAMPLING. 118 

Trace elements were sampled with ultra clean techniques following GEOTRACES 119 

guidelines recommended for the International Polar Year as closely as possible (Bowie 120 

and Lohan, 2009). All sampling processing was carried out under an ISO class 5 trace-121 

metal-clean laminar flow bench in a clean container. For the VERTIGO-K2 cruise 122 

(Figure 1) in the North Pacific (K2 coordinates: 47°N, 160°E), pre-cleaned Teflon-lined 123 

Niskin bottles (10 L) deployed off a Kevlar cable were used to collect surface sea water, 124 

up to a depth of 50 m. Additional surface samples were collected from an inflatable raft 125 

upstream from the ship, using clean sampling procedures. Sampling from the vessel 126 
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occurred on 02/08/2005 and 13/08/2005, with sampling from the raft on 14/08/2005. On 127 

02/08/2005, a 15 L sample was directly poured into a pre-cleaned high density polymer 128 

vessel (20 L) containing 5 DGT devices (Open Pored DGTs) and two 0.5 L aliquots 129 

(unfiltered seawater) were taken from the container and stored in Teflon bottles (pH<3) 130 

for later analysis of TD trace metal concentrations. The 20 L container was stored 131 

between 5 and 10°C and the seawater was frequently homogenized by gentle shaking the 132 

container. On 13/08/2005, two 0.5 L aliquots (unfiltered seawater) were also taken from 133 

the container and stored in Teflon bottles (pH<3) for later analysis of TD trace metal 134 

concentrations, before the seawater in the container was refreshed with a new 15 L 135 

sample. On 24/08/2005, again two 0.5 L aliquots (unfiltered seawater) were taken from 136 

the container and stored in Teflon bottles (pH<3) for TD analyses.  The DGT probes were 137 

then recovered, stored in sealed double layered plastic bags and kept at 4°C, together with 138 

2 blank DGT probes.  139 

For the SR3-GEOTRACES cruise in the Southern Ocean (Figure 1), samples were 140 

collected using externally-closing, Teflon-lined Niskin-1010X bottles (5 L) deployed on 141 

an autonomous 1018 intelligent rosette system specially adapted for trace metal work 142 

(General Oceanics, USA) and suspended on Kevlar rope. Sampling occurred on 143 

26/03/2008 at station #1 (60.4 , 140.7 ), on 4/04/2008 at station #2 (57.9 , 139.9 ), on 144 

11/04/2008 at station #3 (49.9 , 143.8 ), and on 14/04/2008 at station #4 (45.7 , 145.67 ). 145 

The DGT experiments (Open-Pored and Restricted-Pored DGTs) were run in the same 146 

way as during the VERTIGO-K2 cruise, except that they lasted for 7 weeks (i.e., DGTs 147 

remained in the sample solution for 7 weeks) and at a temperature of 4 °C.  At the end of 148 

each DGT experiment, two 0.5 L aliquots (unfiltered seawater) were also taken from the 149 
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container and stored in Teflon bottles (pH<3) for later TD analysis. The DGT probes 150 

were recovered, stored in sealed double layered plastic bags and kept at 4°C, together 151 

with 2 blank DGT probes.   152 

 153 

ANALYSIS OF TRACE METALS. 154 

 Analyses of total dissolvable (TD) trace metal concentrations in the surface ocean 155 

waters were performed according to standard QA/QC protocols in the laboratory of 156 

Analytical and Environmental Chemistry at the Vrije Universiteit Brussel (VUB). A 157 

solvent extraction method, slightly modified from Danielsson et al.  (1978 and 1982) was 158 

applied in order to preconcentrate the trace elements and to eliminate the salt matrix. 159 

Ultrapure reagents were used throughout, and where necessary, an additional purification 160 

procedure was applied, as detailed below: 161 

Nitric acid: Ultrapure nitric acid was obtained through distillation of concentrated  162 

(Merck, Pro Analysis) using an all-Teflon sub-boiling still. Buffer: An ammonium acetate 163 

buffer was prepared by diluting a solution of 22.5 mL ammoniumhydroxide ( ; Merck, 164 

Suprapur) and 11.8 mL acetic acid ( ; Merck, Suprapur) up to 100 mL with Milli Q water 165 

(Millipore). Complexant: 1.0 g Ammonium Pyrolidine DithioCarbamate (APDC; Merck, 166 

Pro Analysis) and 1.0 g Diethylammonium Diethyl DithioCarbamate (DDDC; Merck, 167 

Pro Analysis) were dissolved in 1 mL  (Suprapur) and diluted to 100 mL with Milli Q 168 

water. The clean up of this solution involved a three times extraction with 20 mL freon. 169 

The solution was freshly prepared every 3 days. Freon: 400 mL freon (Pro Analysis) was 170 

washed three times with 5 mL sub boiled nitric acid in a 1000 mL Teflon separatory 171 

funnel.  172 

Between 200 and 400 g of sample or blank (Milli Q water) was weighed and brought 173 
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to a pH of 4.5 to 5.0 by means of the ammonium acetate buffer, in order to obtain optimal 174 

complexation. The pH was immediately checked and if required, additional buffer was 175 

added. To the buffered solution 2.5 mL complexant (solution of 1% APDC / 1% DDDC) 176 

was added. The metal complexes were then extracted in three steps: for the first 177 

extraction, 10 mL of freon was added, the funnel shaken vigorously for 2 minutes, the 178 

phases separated over 5 minutes and the freon phase then layered off into a second 179 

separation Teflon funnel; for the second extraction, 5 mL of freon was added, with the 180 

further steps identical to that of the first extraction; the third extraction was identical to 181 

the second one. All 3 Freon layers were collected in the second separation Teflon funnel, 182 

to which 200 µL of  was added, and allowed to react for 15 minutes.  Six mL of Milli Q 183 

water was then added, the funnel shaken for 1 min, and 5 mL of the upper aqueous phase 184 

transferred to a 10 mL polypropylene tube and stored at 4°C. These samples were 185 

analysed by high resolution inductively coupled – mass spectrometry (ICP-MS; Thermo 186 

Finnigan Element2). The NASS5 reference material (from the National Research 187 

Council, Canada) was analyzed after Freon extraction along with the samples. Agreement 188 

between reference and our measured values after Freon extraction was satisfactory 189 

(maximum of 18% deviation, see Table S1). 190 

For 3 elements, Cd, Cu and Fe, an isotope dilution experiment was also carried out 191 

on the unfiltered sea water samples. To 250 mL of unfiltered seawater, 125 µL of a mixed 192 

isotope spike of 49.34 µg L-1 of Fe (57), 54.00 µg L-1 of Cd (111) and 62.95 µg L-1 of Cu 193 

(65) was added. The extraction of those seawater samples was carried out in a similar 194 

way as for the non-spiked sample. Concentrations of Fe, Cd and Cu isotopes were 195 

measured by ICP-MS and calculated using the isotope dilution method. The 196 
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concentrations of Cd, Cu and Fe obtained with the isotope dilution method were very 197 

similar to the ones obtained with the non-spiked extraction procedure.   198 

Our laboratory also regularly participates in international intercalibration exercises 199 

on trace metals in marine samples, such as the QUASIMEME Laboratory Performance 200 

studies ( ://www.quasimeme.org/structure. ).  201 

The labile metal amounts captured by the chelex resin of the DGT probe were also 202 

analyzed with the ICP-MS instrument after acid elution (1 M nitric acid) of the metals 203 

and their concentrations were calculated using Fick’s first diffusion law (Davison and 204 

Zhang, 1994; Davison et al., 2000; Gao et al., 2006 and 2007). Half of the eluted volume 205 

(2 mL) was analyzed after 5 times dilution, while 40 µL of the same mixed isotope spike 206 

of Fe (57), Cd (111) and Cu (65) used for the unfiltered seawater samples, was added to 207 

the other half of the eluted volume. Analysis was performed using ICP-MS and for the 208 

spiked solution, concentrations of Fe, Cu and Cd were calculated using the isotope 209 

dilution method.   210 

 211 

RESULTS AND DISCUSSION 212 

The TD, labile and non-labile trace element concentrations of Fe, Mn, Co, Cu, Cd, 213 

Ni (trace elements important for phytoplankton growth) and Pb (a non-essential trace 214 

element and potential toxicant) were measured in upper mixed layer waters at the K2 215 

(47°N, 160°E) time series station Northwest Pacific Ocean (Buesseler et al., 2007) and at 216 

4 sampling stations along the ~ E meridian in the Southern Ocean south of Australia, both 217 

HNLC regions. Our experiments were carried out at ambient seawater temperature in the 218 

dark, to avoid assimilation of the trace elements by phytoplankton, and due to the 219 

http://www.quasimeme.org/structure.htm
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extremely low concentrations lasted for several weeks (3 weeks in the Pacific Ocean and 220 

7 weeks in the Southern Ocean).  221 

For each of the considered trace elements, a certain fraction of their TD pool will 222 

likely be non-bioavailable to phytoplankton (Zhang and Davison, 2000; Morel and Price, 223 

2003). These non-available fractions of the TD pool are most pronounced for Fe, Cu and 224 

Mn, as can be seen from the percentages of each of the 3 trace element pools (0-1 nm, 1-225 

10 nm and 10 nm-TD) averaged over all stations (Figure 3). Although the percentages for 226 

each of the individual element pools vary between the stations (Table 1), the general 227 

trend remains the same. In the Northwest Pacific, the TD and <10 nm concentrations are 228 

very similar for several elements (Co, Cd, Ni, Pb), while for others like Fe and Cu, the 229 

concentrations in the size class <10 nm measured by DGT are by far lower than the TD 230 

concentrations (Table 2). Even when we take into account the rather large uncertainties 231 

on those small to very small concentrations (on the TD concentrations, RSDs are up to 232 

20%, see Table 2 where averages and STDs are reported, and are thus of the same 233 

magnitude as the differences found on the reference sea water sample NASS5), they had 234 

no influence on the conclusions we can draw between the 3 trace element pools (0-1 nm, 235 

1-10 nm and 10 nm-TD). For example TD Fe is between 4 to 14 times higher than the 236 

<10 nm fraction and the latter is between 3 and 7 times higher than the <1 nm fraction. 237 

Fe and Cu are known to be mainly present in the dissolved phase as colloids or as 238 

complexes that are strongly bound to ligands and thus unlikely to form labile complexes 239 

(Wells, 20002; Morel and Price, 2003). At all stations in the Southern Ocean, the trace 240 

element concentrations are lower than in the Northwest Pacific but follow the same trend 241 

vs. size. The <10 nm concentrations of Co, Cd, Ni and Pb are substantially smaller than 242 
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the TD. At Southern Ocean stations 3 and 4, we observe still lower concentrations (TD 243 

and labile) of almost all trace elements examined, compared to the two most southerly 244 

stations (1 and 2). The <1 nm concentrations are only assessed in the Southern Ocean: (1) 245 

at stations 1 and 2, low <1 nm/<10 nm ratios are observed for Fe and Mn, indicating that 246 

the fraction <1 nm is small compared to that between 1 and 10 nm; (2) at stations 3 and 4, 247 

despite the fact that for all elements the <10 nm/TD ratios are the lowest of all stations, 248 

we observe a further decrease from the <10 nm to the <1 nm levels for Co, Mn and Ni.   249 

It is difficult to compare our total and labile, size fractionated trace element 250 

concentrations to the limited literature data set because: (1) our concentrations are time 251 

averages over several weeks while literature data reflect short-term conditions; (2) our 252 

samples were collected from surface to 50-100 m depth; and (3) due to heterotrophic 253 

enzymatic activity and without phytoplankton uptake in the DGT experiments, the size 254 

fractionated concentrations can increase with time by bio-degradation of macromolecules 255 

containing the trace elements. In fact, our DGT results represent the amount of trace 256 

elements that are, considered over a time period of several weeks, bioavailable to the 257 

phytoplankton community. Although it is impossible at this moment to quantify the effect 258 

of microbial activity on the size fractionated concentrations observed, we performed 259 

some additional measurements in the Northwest Pacific that allow us to get a better 260 

insight in the magnitude of that process. During the Vertigo experiment at K2, 261 

ammonium regeneration as well as bacterial mineralization rates were assessed with two 262 

different methods (Elskens et al., 2008). Both rates compared very well, with average 263 

values of 0.1 and 0.06 µM-N h P

-1
P for ammonium regeneration and bacterial 264 

mineralization, respectively. In terms of phosphorus by using the Redfield ratio of 16 for 265 
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N/P, this means a regeneration rate of the order of 5.2 nM hP

-1
P. In the literature we can find 266 

some ranges of Me/P ratios in phytoplankton and as a first approximation we will assume 267 

that those ratios are maintained during organic matter regeneration. We will consider two 268 

extreme cases: an element with a very low labile fraction (Fe) and one with a high labile 269 

fraction (Co), see Table 2. The Me/P ratios reported in the literature can vary a lot 270 

depending, for example, on the phytoplankton species, the way they are determined (in 271 

vitro or in situ) and for in vitro determinations even the season of sampling. Considering 272 

only open ocean diatoms and flagellates, Fe/P ratios vary from 1.1 x 10 P

-3
P (Ho et al, 2003) 273 

to 0.63 x 10P

-3
P (Twining et al., 2004), while for Co/P only Ho et al. (2003) reported a 274 

value, being 0.14 x 10P

-3
P. Due to microbial activity, the daily regeneration of Fe in these 275 

conditions ranges from 3.3 to 5.8 pM-Fe hP

-1
P and amounts for Co to 0.75 pM-Co hP

-1
P. 276 

These regeneration rates are initial rates related to the consumption of the most labile 277 

DOC compounds and will only last during a limited time period. Once the most labile 278 

DOC compounds are exhausted the regeneration rates rapidly decline. Using the multi-G 279 

model of Berner, Chen and Wangersky (1996) studied the DOC decay rates for a natural 280 

phytoplankton assemblage (off the coast of Nova Scotia, Canada). If we assume similar 281 

sizes for the 4 DOC pools (11, 5.8, 13.7 and 15.5% from very labile to more refractive) 282 

and we apply the corresponding decay rates (0.12, 0.03, 7.7 10 P

-3
P and 2.9 10P

-3 
PdP

-1
P) on our 283 

system, after 3 weeks 0.25 nM Fe and 0.046 nM Co are regenerated from the DOC pool. 284 

Although DOC pool sizes and their decay rates are probably different in the Northwest 285 

Pacific, it is surprising to notice that the calculated regenerated Fe and Co concentrations 286 

are very similar to their labile concentrations measured with the DGT. This observation 287 
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asks for further investigation of the release of trace elements during the bacterial 288 

degradation of DOC in HNLC oceanic areas. 289 

In Table 3, an overview of trace element concentrations reported in the literature 290 

and unpublished Fe data from the SR3-GEOTRACES Antarctic cruise are presented. 291 

Despite the differences in experimental design, sampling and analytical techniques, these 292 

literature data reflect the same range of concentrations as our data.  293 

Depending on the region and the season, different elements can limit primary 294 

productivity of the HNLC oceans (Moore et al., 2004). Nitrogen is usually the most 295 

important phytoplankton growth limiting element, including most regions of the Pacific 296 

Ocean (Falkowski et al., 1998), but in HNLC regions such as the subarctic North Pacific 297 

Ocean and the Southern Ocean, it has been shown that low levels of Fe are entirely or 298 

partly responsible for the under-utilization of the major nutrients and the lower than 299 

expected chlorophyll levels (e.g. Martin and Fitzwater, 1988; Boyd et al., 2000). 300 

However, an important remaining question is whether phytoplankton primary 301 

productivity is limited by the labile concentrations of trace elements other than Fe, and if 302 

so, (1) which one’s and (2) is this co-limitation the same in the Northwest Pacific and the 303 

Southern Ocean? In prior studies of the Peru upwelling region, Co scarcity and speciation 304 

was found to influence phytoplankton species composition (Saito et al., 2004) and Fe, 305 

Mn, Cu and Zn were found to be co-limiting productivity in the subarctic Pacific Ocean 306 

(Coale, 1991). In studies on phytoplankton cultures, several co-limitations were observed: 307 

for example Peers and Price (2004)P

 
Pfound Fe and Mn to be co-limiting.  308 

Several parameters will finally determine which of the elements is limiting or co-309 

limiting primary productivity in the open ocean. The cellular Me/P ratios, which reflect 310 
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the plankton demand of a given trace element during growth, are different when 311 

considering diatoms, flagellates or coccolitophores (Ho et. al, 2003; Twining et al., 2004) 312 

and will vary during the season, relative to the trace element’s availability (Sunda and 313 

Huntsman, 1995). For some of the trace elements there exists also a mechanism of 314 

replacement by some other one in case of scarcity (Morel, 2008). But the most important 315 

parameter is the pool of bioavailable trace element in the ocean’s surface. To our 316 

knowledge, no prior studies have directly assessed the concentration of bioavailable trace 317 

element fractions (<10 nm, <1 nm), in HNLC areas. This information is very valuable in 318 

studies related to limiting or co-limiting elements in such open oceanic systems.   319 

 320 

CONCLUSION 321 

In this paper, it is demonstrated that it is possible to determine the extremely low 322 

bioavailable concentrations of the trace elements Cd, Co, Cd, Fe, Mn, Ni and Pb in 323 

HNLC oceans such as the Northwest Pacific and Southern Oceans. In our experiments 324 

the labile trace element concentrations obtained by the DGT reflect the amount that was 325 

initially present in the watermass increased by the contribution from bacterial degradation 326 

of DOC. Therefore, the size-fractionated labile amounts reported in this paper are a good 327 

proxy of the averaged (over a time span of a few weeks) bioavailable trace element pools 328 

for phytoplankton in the surface water of the Northwest Pacific and Southern Oceans, 329 

without external inputs. This bioavailable fraction represents only a few percentages of 330 

the total dissolvable amount for elements such as Fe, Mn and Cu while for some other 331 

ones the differences between the TD and bioavailable pools are much smaller. In the 332 

future, it would be interesting to assess the spatio-temporal variability of bioavailable 333 
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trace metal concentrations in HNLC oceans and to study their limiting effect on primary 334 

productivity. 335 

 336 

 337 

 338 

 339 
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FIGURE LEGENDS 454 

Figure 1: Map of the sampling station K2 (Northwest Pacific) and stations 1 to 4 in the 455 
Southern Ocean. 456 
 457 
Figure 2: Schematic view of labile and non-labile trace element compounds diffusing into 458 
a DGT probe. Pore-size is about 10 nm for Open-Pored and 1 nm for Restricted-Pored 459 
hydrogels.  460 
 461 
Figure 3: Average percentages of non-labile, labile and <10 nm and labile and <1 nm 462 
dissolved trace elements in the Northwest Pacific and Southern Oceans.  463 
 464 

465 
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 466 

TABLE LEGENDS 467 
 468 
 469 
Table 1: Percentages of size-fractionated, labile to total dissolvable (TD) trace element 470 
concentrations. 471 
 472 
Table 2: Total dissolvable (TD) and size fractionated, labile element concentrations in the 473 
Northwest Pacific (VERTIGO) and Southern Oceans (SR3-GEOTRACES). TD = Total 474 
Dissolvable, <10 nm = labile fraction smaller than 10 nm, < 1 nm = labile fraction smaller than 1 475 
nm. 476 
  477 
Table 3: Literature results of trace element concentrations from the same oceanic areas 478 
(TD = Total Dissolvable). 479 
  480 
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Table 1: Percentages of size-fractionated, labile to total dissolvable (TD) trace element concentrations. 
 
 
    VERTIGO station K2         
                  

  Fe Cu Co Cd Mn Ni Pb   
% <10 nm/TD 10 21 100 100 44 100 82   

                  
                  
    ANTAR Geotraces, stations # 1 & 2       
                  

  Fe Cu Co Cd Mn Ni Pb   
% <10 nm/TD 27 35 47 61   48 45   

                  
% < 1 nm/TD 4 32 44 45 30* 44 38   

                  
    ANTAR Geotraces, stations # 3 & 4       
                  

  Fe Cu Co Cd Mn Ni Pb   
% <10 nm/TD 7 14 33 24   40 16   

                  
% < 1 nm/TD 3 12 8 16 33* 15 8   

                  
* For Mn the ratio <1 nm/<10 nm is presented              
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Table 2: Total dissolvable (TD) and size fractionated, labile element concentrations in the Northwest Pacific (VERTIGO) and Southern Oceans 

(SR3-GEOTRACES). TD = Total Dissolvable, <10 nm = labile fraction smaller than 10 nm, < 1 nm = labile fraction smaller than 1 nm. 

 
  
          
  Element concentrations in nM (VERTIGO)    
          

 P Fe Cu Co Cd Mn Ni Pb 
TD average 2000 3.1 1.5 0.050 0.41 1.69 4.02 0.056 

STD  ± 0.5 ±0.3 ±0.008 ±0.05 ±0.23 ±0.76 ±0.012 
         

< 10 nm average  0.30 0.31 0.056 0.40 0.74 4.04 0.046 
STD  ±0.08 ±0.03 ±0.005 ±0.03 ±0.08 ±0.32 ±0.005 

         
         
 Element concentrations in nM (SR3-GEOTRACES, stations # 1 & 2)  

         
 P Fe Cu Co Cd Mn Ni Pb 

TD average 500-1700 2.5 1.03 0.0285 0.24  4.7 0.088 
STD  ±0.4 ±0.15 ±0.0045 ±0.04  ±0.7 ±0.012 

         
< 10 nm average   0.68 0.36 0.0135 0.147 0.28 2.30 0.040 

STD  ±0.09 ±0.05 ±0.0020 ±0.023 ±0.05 ±0.35 ±0.009 
         

< 1 nm average  0.10 0.325 0.0125 0.11 0.085 2.1 0.033 
STD   ±0.02 ±0.043 ±0.0019 ±0.02 ±0.006 ±0.3 ±0.008 
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 Element concentrations in nM (SR3-GEOTRACES, stations # 3 & 4)  
         

 P Fe Cu Co Cd Mn Ni Pb 
TD average 500-1700 2.4 0.80 0.0255 0.112  2.91 0.085 

STD  ±0.4 ±0.08 ±0.0040 ±0.015  ±0.29 ±0.014 
         

< 10 nm average   0.165 0.11 0.0085 0.0265 0.23 1.17 0.014 
STD  ±0.025 ±0.02 ±0.0010 ±0.0040 ±0.04 ±0.17 ±0.002 

         
< 1 nm average  0.06 0.095 0.002 0.0175 0.075 0.44 0.007 

STD  ±0.01 ±0.015 ±0.001 ±0.0030 ±0.010 ±0.06 ±0.001 
         
          
          
 
 



Table 3: Literature results of trace element concentrations from the same oceanic areas (TD = Total Dissolvable).   

 

 Element concentrations (nM) around K2      
         

 P Fe Cu Co Cd Mn Ni Pb 
         

TD (Brown et al., 2005)  1.33-3.16       
<0.2 µm dissolved (idem)  0.27-0.46       

         
<0.2 µm dissolved (Fujishima et al., 2001)    0.03-0.05  1.53-1.85 4.8-5.3  
         
         
 Element concentrations (nM) in the Southern Ocean (southern latitudes)   
         

 P Fe Cu Co Cd Mn Ni Pb 
         

<0.2 µm dissolved (SR3-GEOTRACES 
cruise, unpublished results)  0.03       

         
 Element concentrations (nM) in the Southern Ocean (northern latitudes)   
         
         

 P Fe Cu Co Cd Mn Ni Pb 
<0.2 µm dissolved (Ellwood, 2008)   0.5-1.2  0.012-0.35  3.0-5.0 0.012-0.022 

         
<0.2 µm dissolved (SR3-GEOTRACES 

cruise, unpublished results)  0.08       
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