94 research outputs found
Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters
Zika virus (ZIKV) infection can cause severe congenital diseases, such as microcephaly, ocular defects and arthrogryposis in fetuses, and GuillainâBarrĂ© syndrome in adults. Efficacious therapeutic treatments for infected patients, as well as prophylactic treatments to prevent new infections are needed for combating ZIKV infection. Here, we report that ZIKV-specific human polyclonal antibodies (SAB-155), elicited in transchromosomal bovine (TcB), provide significant protection from infection by ZIKV in STAT2 knockout (KO) golden Syrian hamsters both prophylactically and therapeutically. These antibodies also prevent testicular lesions in this hamster model. Our data indicate that antibody-mediated immunotherapy is effective in treating ZIKV infection. Because suitable quantities of highly potent human polyclonal antibodies can be quickly produced from the TcB system against ZIKV and have demonstrated therapeutic efficacy in a small animal model, they have the potential as an effective countermeasure against ZIKV infection
Type II Supernovae as Probes of Cosmology
- Constraining the cosmological parameters and understanding Dark Energy have
tremendous implications for the nature of the Universe and its physical laws.
- The pervasive limit of systematic uncertainties reached by cosmography
based on Cepheids and Type Ia supernovae (SNe Ia) warrants a search for
complementary approaches.
- Type II SNe have been shown to offer such a path. Their distances can be
well constrained by luminosity-based or geometric methods. Competing,
complementary, and concerted efforts are underway, to explore and exploit those
objects that are extremely well matched to next generation facilities.
Spectroscopic follow-up will be enabled by space- based and 20-40 meter class
telescopes.
- Some systematic uncertainties of Type II SNe, such as reddening by dust and
metallicity effects, are bound to be different from those of SNe Ia. Their
stellar progenitors are known, promising better leverage on cosmic evolution.
In addition, their rate - which closely tracks the ongoing star formation rate
- is expected to rise significantly with look- back time, ensuring an adequate
supply of distant examples.
- These data will competitively constrain the dark energy equation of state,
allow the determination of the Hubble constant to 5%, and promote our
understanding of the processes involved in the last dramatic phases of massive
stellar evolution.Comment: Science white paper, submitted to the Decadal committee Astro201
Generation of H7N9-Specific Human Polyclonal Antibodies from a Transchromosomic Goat (caprine) System
To address the unmet needs for human polyclonal antibodies both as therapeutics and diagnostic reagents, building upon our previously established transchromosomic (Tc) cattle platform, we report herein the development of a Tc goat system expressing human polyclonal antibodies in their sera. In the Tc goat system, a human artificial chromosome (HAC) comprising the entire human immunoglobulin (Ig) gene repertoire in the germline configuration was introduced into the genetic makeup of the domestic goat. We achieved this by transferring the HAC into goat fetal fibroblast cells followed by somatic cell nuclear transfer for Tc goat production. Gene and protein expression analyses in the peripheral blood mononuclear cells (PBMC) and the sera, respectively, of Tc caprine demonstrated the successful expression of human Ig genes and antibodies. Furthermore, immunization of Tc caprine with inactivated influenza A (H7N9) viruses followed by H7N9 Hemagglutinin 1 (HA1) boosting elicited human antibodies with high neutralizing activities against H7N9 viruses in vitro. As a small ungulate, Tc caprine offers the advantages of low cost and quick establishment of herds, therefore complementing the Tc cattle platform in responses to a range of medical needs and diagnostic applications where small volumes of human antibody products are needed
CREATE Research Symposium 2022 Book of Abstracts
This is the book of Abstracts for a recent symposium held by the CREATE research Group in TU Dublin
Production of Potent Fully Human Polyclonal Antibodies against Ebola Zaire Virus in Transchromosomal Cattle
Polyclonal antibodies, derived from humans or hyperimmunized animals, have been used prophylactically or therapeutically as countermeasures for a variety of infectious diseases. SAB Biotherapeutics has successfully developed a transchromosomic (Tc) bovine platform technology that can produce fully human immunoglobulins rapidly, and in substantial quantities, against a variety of disease targets. In this study, two Tc bovines expressing high levels of fully human IgG were hyperimmunized with a recombinant glycoprotein (GP) vaccine consisting of the 2014 Ebola virus (EBOV) Makona isolate. Serum collected from these hyperimmunized Tc bovines contained high titers of human IgG against EBOV GP as determined by GP specific ELISA, surface plasmon resonance (SPR), and virus neutralization assays. Fully human polyclonal antibodies against EBOV were purified and evaluated in a mouse challenge model using mouse adapted Ebola virus (maEBOV). Intraperitoneal administration of the purified anti-EBOV IgG (100âmg/kg) to BALB/c mice one day after lethal challenge with maEBOV resulted in 90% protection; whereas 100% of the control animals succumbed. The results show that hyperimmunization of Tc bovines with EBOV GP can elicit protective and potent neutralizing fully human IgG antibodies rapidly and in commercially viable quantities
Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope
We present ultraviolet (UV) spectroscopy and photometry of four Type Ia
supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism
of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset
provides unique spectral time series down to 2000 Angstrom. Significant
diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for
this small sample. The corresponding photometric data, together with archival
data from Swift Ultraviolet/Optical Telescope observations, provide further
evidence of increased dispersion in the UV emission with respect to the
optical. The peak luminosities measured in uvw1/F250W are found to correlate
with the B-band light-curve shape parameter dm15(B), but with much larger
scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag
versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an
outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia
such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W
filters, respectively. We show that different progenitor metallicity or
line-expansion velocities alone cannot explain such a large discrepancy.
Viewing-angle effects, such as due to an asymmetric explosion, may have a
significant influence on the flux emitted in the UV region. Detailed modeling
is needed to disentangle and quantify the above effects.Comment: 17 pages, 13 figures, accepted by Ap
Quantitative temporal viromics: an approach to investigate host-pathogen interaction
A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called âquantitative temporal viromicsâ (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model
Building Virtual Structures With Physical Blocks
We describe a tangible interface for building virtual structures using physical building blocks. We demonstrate two applications of our system. In one version, the blocks are used to construct geometric models of objects and structures for a popular game, Quake II TM . In another version, buildings created with our blocks are rendered in different styles, using intelligent decoration of the building model. KEYWORDS: Tangible user interfaces, transmedia. OVERVIEW Few people know how to use graphics modeling packages, but everyone can build things out of blocks. Starting from this premise, and with the long-term goal of developing an accessible modeling tool for building virtual worlds, we developed a novel object-modeling system comprising building blocks that self-describe the geometric structures into which they are assembled. Each building block contains a microcontroller, and is able to communicate with the blocks to which it is physically connected. The blocks in an assembled ..
- âŠ