25 research outputs found

    Extramitochondrial Ca2+ in the Nanomolar Range Regulates Glutamate-Dependent Oxidative Phosphorylation on Demand

    Get PDF
    We present unexpected and novel results revealing that glutamate-dependent oxidative phosphorylation (OXPHOS) of brain mitochondria is exclusively and efficiently activated by extramitochondrial Ca2+ in physiological concentration ranges (S0.5 = 360 nM Ca2+). This regulation was not affected by RR, an inhibitor of the mitochondrial Ca2+ uniporter. Active respiration is regulated by glutamate supply to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier with regulatory Ca2+-binding sites in the mitochondrial intermembrane space providing full access to cytosolic Ca2+. At micromolar concentrations, Ca2+ can also enter the intramitochondrial matrix and activate specific dehydrogenases. However, the latter mechanism is less efficient than extramitochondrial Ca2+ regulation of respiration/OXPHOS via aralar. These results imply a new mode of glutamate-dependent OXPHOS regulation as a demand-driven regulation of mitochondrial function. This regulation involves the mitochondrial glutamate/aspartate carrier aralar which controls mitochondrial substrate supply according to the level of extramitochondrial Ca2+

    Значимые личности в истории города Юрги Кемеровской области

    Get PDF
    В данной статье впервые даётся авторский взгляд на то, кого из юргинцев можно отнести к наиболее значимым личностям в истории города Юрги Кемеровской области. Предлагается перечень лиц с короткой характеристикой причины их включения. Делается вывод о малоизученности многих вопросов этой темы и её научной перспективности

    Mitochondria and Energetic Depression in Cell Pathophysiology

    Get PDF
    Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell’s ability to do work and control the intracellular Ca2+ homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis

    Exclusive activation of glutamate-dependent state 3 respiration of brain mitochondria by extramitochondrial Ca<sup>2+</sup> in the nanomolar range.

    No full text
    <p>(A,E) Respirograms of rat brain mitochondria were obtained by high-resolution respirometry. (A) Isolated rat brain mitochondria were incubated in EGTA medium (Ca<sup>2+</sup><sub>free</sub> = 0.15 µM) in the presence of 10 mM glutamate and 2 mM malate as substrates. Additions: M, 0.06 mg/ml brain mitochondria, A, 2.5 mM ADP to activate the phosphorylation-related respiration (state 3); Ca<sup>2+</sup><sub>4,9</sub>, 4.9 µM Ca<sup>2+</sup><sub>free</sub>; S, 10 mM succinate as substrate of respiratory chain complex II; C, 5 µM carboxyatractyloside to block the adenine nucleotide translocase. Blue lines indicate the oxygen concentration and red lines represent respiration rates (nmol O<sub>2</sub>/mg mitochondrial protein/min). (B) Means of state 3 respiration±S.E. as measured in experiments shown in A without (black columns, n = 6) or with 250 nM RR, an inhibitor of mitochondrial Ca<sup>2+</sup> uptake (red columns, n = 6). First group of columns, state 3 at Ca<sup>2+</sup><sub>free</sub> = 0.15 µM. Second group, state 3 with Ca<sup>2+</sup><sub>free</sub> = 4.9 µM. Third group, state 3 with Ca<sup>2+</sup><sub>free</sub> = 4.9 µM in the additional presence of 10 µM succinate. *, p<0.05. (C) As B, but derived from experiments with 10 mM pyruvate + 2 mM malate as substrates. *, p<0.05. (D) As B, but derived from experiments with 10 mM succinate + 2 µM rotenone as substrate. (E) Ca<sup>2+</sup> titration of state 3<sub>glu/mal</sub> by stepwise increase of Ca<sup>2+</sup> as indicated either without (E,F) or with (F) 250 nM RR. (F) Incremental accretions of Ca<sup>2+</sup>-induced state 3<sub>glu/mal</sub> were plotted against the fluorimetrically measured Ca<sup>2+</sup> activity (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0008181#pone-0008181-g001" target="_blank">Fig. 1F</a>), allowing the calculation of the half-activation constant (S<sub>0.5</sub>) and the maximum velocity (V<sub>max</sub>) using the SigmaPlot kinetic module as given in the text. (G) Rates of state 3<sub>glu/mal</sub> respiration obtained by Ca<sup>2+</sup> titrations under various conditions. (○) Control mitochondria were investigated as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0008181#pone-0008181-g001" target="_blank">Fig. 1E</a>. (□) As (○), but in the additional presence of 10% dextran 20. (▿) As (○), but in the additional presence of 1 mM CsA. (▵) as (○), but mitochondria isolated without digitonin were used. (◊) as (○), but mitoplasts were used. () as (○), but mitochondria were uncoupled by 50 nM FCCP from the beginning of experiments, and then Ca<sup>2+</sup> titration was performed. (▴) as (○), but Ca<sup>2+</sup> was adjusted at the beginning of experiments as indicated. Thereafter, 100 µM ADP was added, causing short transitions between the active and resting states of respiration. After reaching state 4 respiration, FCCP titrations were performed to uncouple respiration and ATP generation. Maximum respiration rates were obtained at 60 or 80 nM FCCP and were plotted against the Ca<sup>2+</sup><sub>free</sub> value for the respective incubation. Data are means±S.E. of 4 independent experiments.</p

    Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia

    No full text
    Abstract Background Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced occlusion of the middle cerebral artery in rats, a model of transient and unilateral cerebral ischemia. Methods Male Sprague-Dawley rats were used. RT-PCR, immunohistochemistry and protease activity assays were performed at different time points, lasting from 2 h to 7 days after cerebral ischemia. The effect of protease inhibitors on ischemia-dependent infarct volumes was quantified 7 days post middle cerebral artery occlusion. Statistical analysis was conducted using the t-test. Results Qualitative RT-PCR revealed these proteases in ipsilateral and contralateral cortices. Dipeptidyl peptidase II and aminopeptidase N were up-regulated ipsilaterally from 6 h to 7 days post ischemia, whereas dipeptidyl peptidase 9 and cytosolic alanyl-aminopeptidase were transiently down-regulated at day 3. Dipeptidyl peptidase 8 and aminopeptidase N immunoreactivities were detected in cortical neurons of the contralateral hemisphere. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were identified in activated microglia and macrophages in the ipsilateral cortex. Seven days post artery occlusion, dipeptidyl peptidase IV immunoreactivity was found in the perikarya of surviving cortical neurons of the ipsilateral hemisphere, whereas their nuclei were dipeptidyl peptidase 8- and amino peptidase N-positive. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were targeted in astroglial cells. Total dipeptidyl peptidase IV, 8 and 9 activities remained constant in both hemispheres until day 3 post experimental ischemia, but were increased (+165%) in the ipsilateral cortex at day 7. In parallel, aminopeptidase N and cytosolic alanyl-aminopeptidase activities remained unchanged. Conclusions Distinct expression, localization and activity patterns of proline- and alanine-specific proteases indicate their involvement in ischemia-triggered inflammation and neurodegeneration. Consistently, IPC1755, a non-selective protease inhibitor, revealed a significant reduction of cortical lesions after transient cerebral ischemia and may suggest dipeptidyl peptidase IV, aminopeptidase N and proteases with similar substrate specificity as potentially therapy-relevant targets.</p

    Induced Tauopathy in a Novel 3D-Culture Model Mediates Neurodegenerative Processes: A Real-Time Study on Biochips

    Get PDF
    <div><p>Tauopathies including Alzheimer’s disease represent one of the major health problems of aging population worldwide. Therefore, a better understanding of tau-dependent pathologies and consequently, tau-related intervention strategies is highly demanded. In recent years, several tau-focused therapies have been proposed with the aim to stop disease progression. However, to develop efficient active pharmaceutical ingredients for the broad treatment of Alzheimer’s disease patients, further improvements are necessary for understanding the detailed neurodegenerative processes as well as the mechanism and side effects of potential active pharmaceutical ingredients (API) in the neuronal system. In this context, there is a lack of suitable complex <em>in vitro</em> cell culture models recapitulating major aspects of taupathological degenerative processes in sufficient time and reproducible manner.</p> <p>Herewith, we describe a novel 3D SH-SY5Y cell-based, tauopathy model that shows advanced characteristics of matured neurons in comparison to monolayer cultures without the need of artificial differentiation promoting agents. Moreover, the recombinant expression of a novel highly pathologic fourfold mutated human tau variant lead to a fast and emphasized degeneration of neuritic processes. The neurodegenerative effects could be analyzed in real time and with high sensitivity using our unique microcavity array-based impedance spectroscopy measurement system. We were able to quantify a time- and concentration-dependent relative impedance decrease when Alzheimer’s disease-like tau pathology was induced in the neuronal 3D cell culture model. In combination with the collected optical information, the degenerative processes within each 3D-culture could be monitored and analyzed. More strikingly, tau-specific regenerative effects caused by tau-focused active pharmaceutical ingredients could be quantitatively monitored by impedance spectroscopy.</p> <p>Bringing together our novel complex 3D cell culture taupathology model and our microcavity array-based impedimetric measurement system, we provide a powerful tool for the label-free investigation of tau-related pathology processes as well as the high content analysis of potential active pharmaceutical ingredient candidates.</p> </div
    corecore