8 research outputs found

    Variations in Daily Maximum Areas and Longitudinal Widths of Solar Coronal Holes in 2017-2020

    Get PDF
    We considered coronal holes as a manifestation of the large-scale magnetic field of the Sun. The main goal of this work was to study the variations in the largest areas and longitudinal widths of solar coronal holes observed daily in the polar and mid-latitude zones on a time scale of 984 days. Statistical methods of fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition (EMD) were used to detect periodicity in the variations of the considered parameters. Long-term variations in the daily measured areas and longitudinal widths of the largest solar coronal holes with periods of 8-9,13-15, and 26-29 days were detected in three zones of the Sun: polar (north and south) and equatorial. The obtained periods are most clearly visible at the equatorial zone. In the polar zones the period of 8-9 days has a weak amplitude. We interpreted variations with periods of 8-9,13-15, and 26-29 days as a rotation of the six-, four-, and two-sector structure of the large-scale solar magnetic field

    On the origin of 140 GHz emission from the 4 July 2012 solar flare

    Get PDF
    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140~GHz as well as Kislovodsk and Mets\"ahovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5~MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near 1010~GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1~MK.Comment: 18 pages, 6 figure

    Variations in Daily Maximum Areas and Longitudinal Widths of Solar Coronal Holes in 2017–2020

    No full text
    We considered coronal holes as a manifestation of the large-scale magnetic field of the Sun. The main goal of this work was to study the variations in the largest areas and longitudinal widths of solar coronal holes observed daily in the polar and mid-latitude zones on a time scale of 984 days. Statistical methods of fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition (EMD) were used to detect periodicity in the variations of the considered parameters. Long-term variations in the daily measured areas and longitudinal widths of the largest solar coronal holes with periods of 8–9, 13–15, and 26–29 days were detected in three zones of the Sun: polar (north and south) and equatorial. The obtained periods are most clearly visible at the equatorial zone. In the polar zones the period of 8–9 days has a weak amplitude. We interpreted variations with periods of 8–9, 13–15, and 26–29 days as a rotation of the six-, four-, and two-sector structure of the large-scale solar magnetic field

    Variations in Daily Maximum Areas and Longitudinal Widths of Solar Coronal Holes in 2017–2020

    No full text
    We considered coronal holes as a manifestation of the large-scale magnetic field of the Sun. The main goal of this work was to study the variations in the largest areas and longitudinal widths of solar coronal holes observed daily in the polar and mid-latitude zones on a time scale of 984 days. Statistical methods of fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition (EMD) were used to detect periodicity in the variations of the considered parameters. Long-term variations in the daily measured areas and longitudinal widths of the largest solar coronal holes with periods of 8–9, 13–15, and 26–29 days were detected in three zones of the Sun: polar (north and south) and equatorial. The obtained periods are most clearly visible at the equatorial zone. In the polar zones the period of 8–9 days has a weak amplitude. We interpreted variations with periods of 8–9, 13–15, and 26–29 days as a rotation of the six-, four-, and two-sector structure of the large-scale solar magnetic field

    Developing zebrafish experimental animal models relevant to schizophrenia

    No full text
    Schizophrenia is a severely debilitating, lifelong psychiatric disorder affecting approximately 1% of global population. The pathobiology of schizophrenia remains poorly understood, necessitating further translational research in this field. Experimental (animal) models are becoming indispensable for studying schizophrenia-related phenotypes and pro/antipsychotic drugs. Mounting evidence suggests the zebrafish (Danio rerio) as a useful tool to model various phenotypes relevant to schizophrenia. In addition to their complex robust behaviors, zebrafish possess high genetic and physiological homology to humans, and are also sensitive to drugs known to reduce or promote schizophrenia clinically. Here, we summarize findings on zebrafish application to modeling schizophrenia, as well as discuss recent progress and remaining challenges in this field. We also emphasize the need in further development and wider use of zebrafish models for schizophrenia to better understand its pathogenesis and enhance the search for new effective antipsychotics

    The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models

    No full text
    corecore