20 research outputs found

    Impact of Chlorine on the Internal Transition Rates and Excited States of the Thermally Delayed Activated Fluorescence Molecule 3CzClIPN

    Full text link
    We analyze internal transition rates and the singlet-triplet energy gap of the thermally activated delayed fluorescence (TADF) molecule 3CzClIPN, which recently was introduced as an efficient photocatalyst. Distribution and origin of the non-monoexponential decays, which are commonly observed in TADF films, are revealed by analysis of transient fluorescence with an inverse Laplace transform. A numerically robust global rate fit routine, which extracts all relevant TADF parameters by modeling the complete set of data, is introduced. To compare and verify the results, all methods are also applied to the well-known 4CzIPN. The influence of the molecular matrix is discussed by embedding low concentrations of TADF molecules in polystyrene films. Finally, quantum chemical calculations are compared to the experimental results to demonstrate that the chlorine atom increases the charge transfer character of the relevant states, resulting in a reduction of the singlet-triplet energy gap

    Sepsis at ICU admission does not decrease 30-day survival in very old patients: a post-hoc analysis of the VIP1 multinational cohort study.

    Get PDF
    BACKGROUND: The number of intensive care patients aged ≥ 80 years (Very old Intensive Care Patients; VIPs) is growing. VIPs have high mortality and morbidity and the benefits of ICU admission are frequently questioned. Sepsis incidence has risen in recent years and identification of outcomes is of considerable public importance. We aimed to determine whether VIPs admitted for sepsis had different outcomes than those admitted for other acute reasons and identify potential prognostic factors for 30-day survival. RESULTS: This prospective study included VIPs with Sequential Organ Failure Assessment (SOFA) scores ≥ 2 acutely admitted to 307 ICUs in 21 European countries. Of 3869 acutely admitted VIPs, 493 (12.7%) [53.8% male, median age 83 (81-86) years] were admitted for sepsis. Sepsis was defined according to clinical criteria; suspected or demonstrated focus of infection and SOFA score ≥ 2 points. Compared to VIPs admitted for other acute reasons, VIPs admitted for sepsis were younger, had a higher SOFA score (9 vs. 7, p < 0.0001), required more vasoactive drugs [82.2% vs. 55.1%, p < 0.0001] and renal replacement therapies [17.4% vs. 9.9%; p < 0.0001], and had more life-sustaining treatment limitations [37.3% vs. 32.1%; p = 0.02]. Frailty was similar in both groups. Unadjusted 30-day survival was not significantly different between the two groups. After adjustment for age, gender, frailty, and SOFA score, sepsis had no impact on 30-day survival [HR 0.99 (95% CI 0.86-1.15), p = 0.917]. Inverse-probability weight (IPW)-adjusted survival curves for the first 30 days after ICU admission were similar for acute septic and non-septic patients [HR: 1.00 (95% CI 0.87-1.17), p = 0.95]. A matched-pair analysis in which patients with sepsis were matched with two control patients of the same gender with the same age, SOFA score, and level of frailty was also performed. A Cox proportional hazard regression model stratified on the matched pairs showed that 30-day survival was similar in both groups [57.2% (95% CI 52.7-60.7) vs. 57.1% (95% CI 53.7-60.1), p = 0.85]. CONCLUSIONS: After adjusting for organ dysfunction, sepsis at admission was not independently associated with decreased 30-day survival in this multinational study of 3869 VIPs. Age, frailty, and SOFA score were independently associated with survival

    Chromophore-Matrix Interaction in Organic Semiconductors

    Get PDF
    Organische Halbleiter sind Moleküle und Polymere, welche durch die Konjugation ihres Elektronensystems Eigenschaften erhalten, die klassischen anorganischen Halbleitern ähnlich sind. Dadurch eignen sie sich zur Anwendung in Solarzellen, Leuchtdioden, Farbstoffen und Photokatalysatoren. Im Gegensatz zu anorganischen Halbleitern bilden organische Halbleiter in dünnen Filmen meist ungeordnete Strukturen. Diese räumliche und energetische Unordnung ist auf molekulare Eigenschaften zurückzuführen und erschwert das Verständnis der Wirkungsweise von Bauteilen, wie beispielsweise organischen Solarzellen. Ursache ist, dass sich die photophysikalischen Eigenschaften einzelner organischer Halbleitermoleküle deutlich von ungeordneten Filmen unterscheiden. Der für die Wechselwirkung mit Licht entscheidende Bestandteil eines solchen Moleküls bzw. Monomers wird als Chromophor (griechisch Farbträger) bezeichnet. Die Interaktion von Chromophoren mit der umgebenden Matrix aus gleichen oder anderen Molekülen ist von zentraler Bedeutung für das Verständnis organischer Halbleiter und damit der Verbesserung von Bauteilen aus diesen Materialien. In der vorliegenden Arbeit werden neue experimentelle und mathematische Verfahren zur Analyse und Interpretation der photophysikalischen Eigenschaften von Chromophoren in Filmen organischer Halbleiter entwickelt und auf verschiedene Materialsysteme angewandt. Die wesentlichen Erkenntnisse und Leistungen dieser Arbeit sind der erstmalige Nachweis der Zeitabhängigkeit der Stokes-Verschiebung (Differenz von Emission und Absorption eines Farbstoffs), die empirische Herleitung eines Chromophormodells zur Beschreibung von Exzitonendiffusion in Polymeren, die molekülbezogene Modellierung verzögerter Fluoreszenz sowie die ortsaufgelöste Emissions- und Absorptionsmessung eines Ladungstransferzustandes. Die experimentellen Ergebnisse, entwickelten Methoden und hergeleiteten Modelle sind im Forschungsgebiet der organischen Halbleiter für verschiedene Teildisziplinen (Einzelmolekülspektroskopie, Solarzellen, Leuchtdioden, Photokatalyse) bedeutsam. Die Arbeit beschreibt damit themenübergreifend den Zusammenhang zwischen photophysikalischen Eigenschaften organischer Halbleiter und ihrer Ursache in den molekularen und energetischen Gegebenheiten einzelner Chromophore

    Chromophore-Matrix Interaction in Organic Semiconductors

    No full text
    Organische Halbleiter sind Moleküle und Polymere, welche durch die Konjugation ihres Elektronensystems Eigenschaften erhalten, die klassischen anorganischen Halbleitern ähnlich sind. Dadurch eignen sie sich zur Anwendung in Solarzellen, Leuchtdioden, Farbstoffen und Photokatalysatoren. Im Gegensatz zu anorganischen Halbleitern bilden organische Halbleiter in dünnen Filmen meist ungeordnete Strukturen. Diese räumliche und energetische Unordnung ist auf molekulare Eigenschaften zurückzuführen und erschwert das Verständnis der Wirkungsweise von Bauteilen, wie beispielsweise organischen Solarzellen. Ursache ist, dass sich die photophysikalischen Eigenschaften einzelner organischer Halbleitermoleküle deutlich von ungeordneten Filmen unterscheiden. Der für die Wechselwirkung mit Licht entscheidende Bestandteil eines solchen Moleküls bzw. Monomers wird als Chromophor (griechisch Farbträger) bezeichnet. Die Interaktion von Chromophoren mit der umgebenden Matrix aus gleichen oder anderen Molekülen ist von zentraler Bedeutung für das Verständnis organischer Halbleiter und damit der Verbesserung von Bauteilen aus diesen Materialien. In der vorliegenden Arbeit werden neue experimentelle und mathematische Verfahren zur Analyse und Interpretation der photophysikalischen Eigenschaften von Chromophoren in Filmen organischer Halbleiter entwickelt und auf verschiedene Materialsysteme angewandt. Die wesentlichen Erkenntnisse und Leistungen dieser Arbeit sind der erstmalige Nachweis der Zeitabhängigkeit der Stokes-Verschiebung (Differenz von Emission und Absorption eines Farbstoffs), die empirische Herleitung eines Chromophormodells zur Beschreibung von Exzitonendiffusion in Polymeren, die molekülbezogene Modellierung verzögerter Fluoreszenz sowie die ortsaufgelöste Emissions- und Absorptionsmessung eines Ladungstransferzustandes. Die experimentellen Ergebnisse, entwickelten Methoden und hergeleiteten Modelle sind im Forschungsgebiet der organischen Halbleiter für verschiedene Teildisziplinen (Einzelmolekülspektroskopie, Solarzellen, Leuchtdioden, Photokatalyse) bedeutsam. Die Arbeit beschreibt damit themenübergreifend den Zusammenhang zwischen photophysikalischen Eigenschaften organischer Halbleiter und ihrer Ursache in den molekularen und energetischen Gegebenheiten einzelner Chromophore

    Impact of chlorine on the internal transition rates and excited states of the thermally delayed activated fluorescence molecule 3CzClIPN

    No full text
    We analyze internal transition rates and the singlet–triplet energy gap of the thermally activated delayed fluorescence (TADF) molecule 3CzClIPN, which recently was introduced as an efficient photocatalyst. The distribution and origin of the non-monoexponential decays, which are commonly observed in TADF films, are revealed by an analysis of transient fluorescence with an inverse Laplace transform. A numerically robust global rate fit routine, which extracts all relevant TADF parameters by modeling the complete set of data, is introduced. To compare and verify the results, all methods are also applied to the well-known 4CzIPN. The influence of the molecular matrix is discussed by embedding low concentrations of TADF molecules in polystyrene films. Finally, quantum chemical calculations are compared to the experimental results to demonstrate that the chlorine atom increases the charge-transfer character of the relevant states, resulting in a reduction of the singlet–triplet energy gap
    corecore