306 research outputs found
Analysis and preliminary design of optical sensors for propulsion control
A fiber-optic sensor concept screening study was performed. Twenty sensor subsystems were identified and evaluated. Two concepts selected for further study were the Fabry-Perot fiber-optic temperature sensor and the pulse-width-modulated phosphorescent temperature sensor. Various designs suitable for a Fabry-Perot temperature sensor to be used as a remote fiber-optic transducer were investigated. As a result, a particular design was selected and constructed. Tests on this device show that spectral peaks are produced from visible white light, and the change in wavelength of the spectral peaks produced by a change in temperature is consistent with theory and is 36 nm/C for the first order peak. A literature search to determine a suitable phosphor for implementing the pulse-width-modulated fiber optic temperature sensor was conducted. This search indicated that such a device could be made to function for temperatures up to approximately 200 C. Materials like ZnCdS and ZnSe activated with copper will be particularly applicable to temperature sensing in the cryogenic to room temperature region. While this sensing concept is probably not applicable to jet engines, the simplicity and potential reliability make the concept highly desirable for other applications
Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030
The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion
Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell
Transport from the Northern Hemisphere (NH) midlatitudes to the
Arctic plays a crucial role in determining the abundance of trace gases and
aerosols that are important to Arctic climate via impacts on radiation and
chemistry. Here we examine this transport using an idealized tracer with a
fixed lifetime and predominantly midlatitude land-based sources in models
participating in the Chemistry Climate Model Initiative (CCMI). We show that
there is a 25 %–45 % difference in the Arctic concentrations of this tracer
among the models. This spread is correlated with the spread in the location
of the Pacific jet, as well as the spread in the location of the Hadley Cell
(HC) edge, which varies consistently with jet latitude. Our results suggest
that it is likely that the HC-related zonal-mean meridional transport rather
than the jet-related eddy mixing is the major contributor to the inter-model
spread in the transport of land-based tracers into the Arctic. Specifically,
in models with a more northern jet, the HC generally extends further north
and the tracer source region is mostly covered by surface southward flow
associated with the lower branch of the HC, resulting in less efficient
transport poleward to the Arctic. During boreal summer, there are poleward
biases in jet location in free-running models, and these models likely
underestimate the rate of transport into the Arctic. Models using specified
dynamics do not have biases in the jet location, but do have biases in the
surface meridional flow, which may result in differences in transport into
the Arctic. In addition to the land-based tracer, the midlatitude-to-Arctic
transport is further examined by another idealized tracer with zonally
uniform sources. With equal sources from both land and ocean, the inter-model
spread of this zonally uniform tracer is more related to variations in
parameterized convection over oceans rather than variations in HC extent,
particularly during boreal winter. This suggests that transport of land-based
and oceanic tracers or aerosols towards the Arctic differs in pathways and
therefore their corresponding inter-model variabilities result from different
physical processes.</p
A New Retrieval Algorithm for OMI NO2: Tropospheric Results and Comparisons with Measurements and Models
Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes
Assessing the Effects of Personal Characteristics and Context on U.S. House Speakers’ Leadership Styles, 1789-2006
Research on congressional leadership has been dominated in recent decades by contextual interpretations that see leaders’ behavior as best explained by the environment in which they seek to exercise leadership—particularly, the preference homogeneity and size of their party caucus. The role of agency is thus discounted, and leaders’ personal characteristics and leadership styles are underplayed. Focusing specifically on the speakers of the U.S. House of Representatives from the first to the 110th Congress, we construct measures of each speaker’s commitment to comity and leadership assertiveness. We find the scores reliable and then test the extent to which a speaker’s style is the product of both political context and personal characteristics. Regression estimates on speakers’ personal assertiveness scores provide robust support for a context-plus-personal characteristics explanation, whereas estimates of their comity scores show that speakers’ personal backgrounds trump context
Recent Advances in Ozone Data Assimilation at the GMAO - Towards a New Reanalysis
This presentation summarized ongoing work on improving the representation of ozone in the GEOS Data Assimilation Systems. Data from two EOS Aura sensors was used: the total column ozone from the Ozone Monitoring Instrument (OMI) and high vertical resolution stratospheric profiles from Microwave Limb Sounder (MLS, version 3.3). As several previous studies have demonstrated, assimilation of this data can constrain the stratospheric and tropospheric ozone columns with relatively good accuracy. However, the representation of the vertical structures in the troposphere and near tropopause region is often deficient. Since both these layers of the atmosphere are critical to the understanding of the radiative forcing as well as the ozone budget in the troposphere, current work will focus on improving the assimilated product between the surface and the 50 hPa pressure level. The discussion included recent steps that have been taken towards refining the treatment of ozone in GEOS-5. Impacts of improved tropospheric chemistry model were discussed including the introduction of efficiency factors ("averaging kernels") for OMI total ozone, and direct assimilation of radiances from the MLS instrument. In particular, advantages and challenges involved in assimilating limb radiances rather than retrieved product were discussed. This work is, in part, a preparation for a planned reanalysis of the EOS Aura data from 2005 to present
Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334
We identify a prominent absorption feature at 1115 GHz, detected in first
HIFI spectra towards high-mass star-forming regions, and interpret its
astrophysical origin. The characteristic hyperfine pattern of the H2O+
ground-state rotational transition, and the lack of other known low-energy
transitions in this frequency range, identifies the feature as H2O+ absorption
against the dust continuum background and allows us to derive the velocity
profile of the absorbing gas. By comparing this velocity profile with velocity
profiles of other tracers in the DR21 star-forming region, we constrain the
frequency of the transition and the conditions for its formation. In DR21, the
velocity distribution of H2O+ matches that of the [CII] line at 158\mu\m and of
OH cm-wave absorption, both stemming from the hot and dense clump surfaces
facing the HII-region and dynamically affected by the blister outflow. Diffuse
foreground gas dominates the absorption towards Sgr B2. The integrated
intensity of the absorption line allows us to derive lower limits to the H2O+
column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15
cm^-2 in Sgr B2.Comment: Accepted for publication in A&
Struggle with a gap between intensive care units and general wards
Nursing critically ill patients includes planning and performing safe discharges from Intensive Care Units (ICU) to the general wards. The aim of this study was to obtain a deeper understanding of the main concern in the ICU transitional process—the care before, during, and after the transfer of ICU patients. Interviews were conducted with 35 Swedish nurses and analysed according to grounded theory. The main concern was the nurses' “struggling with a gap.” The “gap” was caused by differences in the altered level of care and contributed to difficulties for nurses encountering an overlap during the transitional care. The categories: sheltering, seeking organizational intertwining and striving for control are related to the core category and were used to generate a theory. The nurses sought improved collaboration, and employed patient-centred routines. They wanted access to necessary tools; they relayed or questioned their own competence and sought assurance of the patients' ability to be transferred. If the nurses felt a loss of control, lack of intertwining and lack of collaboration, they sheltered their patients and themselves. Intertwining was more difficult to perform, but actually even more important to do. With knowledge about ICU transitional care, collaboration, routines, and with an organization that provides an educational environment, the process could be improved
Attachment style, assertive communication, and safer-sex behavior
This research tested the proposition that the effect of attachment security on safer-sex practice may be mediated by communication patterns. One hundred eighty-five undergraduate students completed questionnaire measures of attachment, assertiveness, and attitudes to communication about AIDS. Eight weeks later, they reported on their practice of safer sex in the period since the first testing session. Hierarchical regressions showed that at Step 1, anxiety about relationships (a measure of insecure attachment) was associated with less safer-sex practice, for all outcome measures. Attitudes to communication about AIDS added to the prediction of general reports of safer-sex practice: in line with the mediational model, anxiety about relationships became unimportant as a predictor when communication variables were included. Communication variables failed to add to the prediction of safer sex on the most recent encounter, and both anxiety about relationships and attitudes to communication about AIDS predicted condom use. Some gender differences in patterns of prediction were noted. The results are discussed in terms of attachment style and its links with the negotiation of sexual practice and relationship issues
- …