179 research outputs found

    Functional Plasticity in Oyster Gut Microbiomes along a Eutrophication Gradient in an Urbanized Estuary

    Get PDF
    Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities

    Does Simulated Spaceflight Modify Epigenetic Status During Bone Remodeling?

    Get PDF
    Little is known about the effects of spaceflight conditions on epigenetics. The term epigenetics describes changes to the genome that can affect expression of a gene without changes to the sequence of DNA. Epigenetic processes are thought to underlie cellular differentiation, where transcription of specific genes occurs in response to key stimuli, and may be heritable - passing from one cell to its daughter cell. We hypothesize that the mechanical environment during spaceflight, namely microgravity-induced weightlessness or exercise regulate gene expression in the osteoblast-lineage cells both to control bone formation by osteoblasts and bone resorption by osteoclasts, which continually shapes bone structure throughout life. Similarly we intend to evaluate how radiation regulates these same bone cell activity and differentiation related genes. We further hypothesize that the regulation in bone cell gene expression is at least partially controlled through epigenetic mechanisms of methylation or small non-coding RNA (microRNAs). We have acquired preliminary data suggesting that global genome methylation is modified in response to axial compression of the tibia - a model of exercise. We intend to pursue these hypotheses wherein we will evaluate changes in gene expression and, congruently, changes in epigenetic state in bones from mice subjected to the aforementioned conditions: hindlimb unloading to simulate weightlessness, axial compression of the tibia, or radiation exposure in order to gain insight into the role of epigenetics in spaceflight-induced bone loss

    The pulsating hot subdwarf Balloon 090100001: results of the 2005 multisite campaign

    Full text link
    We present the results of a multisite photometric campaign on the pulsating sdB star Balloon 090100001. The star is one of the two known hybrid hot subdwarfs with both long- and short-period oscillations. The campaign involved eight telescopes with three obtaining UBVR data, four B-band data, and one Stromgren uvby photometry. The campaign covered 48 nights, providing a temporal resolution of 0.36microHz with a detection threshold of about 0.2mmag in B-filter data. Balloon 090100001 has the richest pulsation spectrum of any known pulsating subdwarf B star and our analysis detected 114 frequencies including 97 independent and 17 combination ones. The strongest mode (f_1) in the 2.8mHz region is most likely radial while the remaining ones in this region form two nearly symmetric multiplets: a triplet and quintuplet, attributed to rotationally split \ell=1 and 2 modes, respectively. We find clear increases of splitting in both multiplets between the 2004 and 2005 observing campaigns, amounting to 15% on average. The observed splittings imply that the rotational rate in Bal09 depends on stellar latitude and is the fastest on the equator. We use a small grid of models to constrain the main mode (f_1), which most likely represents the radial fundamental pulsation. The groups of p-mode frequencies appear to lie in the vicinity of consecutive radial overtones, up to the third one. Despite the large number of g-mode frequencies observed, we failed to identify them, most likely because of the disruption of asymptotic behaviour by mode trapping. The observed frequencies were not, however, fully exploited in terms of seismic analysis which should be done in the future with a larger grid of reliable evolutionary models of hot subdwarfs.Comment: accepted for publication in MNRA

    Genotyping Validates the Efficacy of Photographic Identification in a Capture-Mark-Recapture Study Based on the Head Scale Patterns of the Prairie Lizard (\u3ci\u3eSceloporus consobrinus\u3c/i\u3e)

    Get PDF
    Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a southern hemisphere coastal feeding ground

    Get PDF
    Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.National Research Foundation (NRF), South Africa [2047517]; PADI Project AWARE (UK) [095]; Earthwatch Institute (project title "Whales of South Africa"

    Kepler Eclipsing Binary Stars. Vii. The Catalog Of Eclipsing Binaries Found In The Entire Kepler Data Set

    Get PDF
    The Kepler mission has provided unprecedented, nearly continuous photometric data of ~200,000 objects in the ~105 deg2 field of view (FOV) from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters, and analytical approximation fits for every known eclipsing binary system in the Kepler FOV. Using target pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e., targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth, and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler FOV that were not targets for observation, and these have been added to the catalog

    Assessing the recovery of an Antarctic predator from historical exploitation

    Get PDF
    The recovery of whale populations from centuries of exploitation will have important management and ecological implications due to greater exposure to anthropogenic activities and increasing prey consumption. Here, a Bayesian population model integrates catch data, estimates of abundance, and information on genetics and biology to assess the recovery of western South Atlantic (WSA) humpback whales (Megaptera novaeangliae). Modelling scenarios evaluated the sensitivity of model outputs resulting from the use of different data, different model assumptions and uncertainty in catch allocation and in accounting for whales killed but not landed. A long period of exploitation drove WSA humpback whales to the brink of extinction. They declined from nearly 27 000 (95% PI = 22 800–33 000) individuals in 1830 to only 450 (95% PI = 200–1400) whales in the mid-1950s. Protection led to a strong recovery and the current population is estimated to be at 93% (95% PI = 73–100%) of its pre-exploitation size. The recovery of WSA humpback whales may result in large removals of their primary prey, the Antarctic krill (Euphausia superba), and has the potential to modify the community structure in their feeding grounds. Continued monitoring is needed to understand how these whales will respond to modern threats and to climate-driven changes to their habitats

    Long-term resightings of humpback whales off Ecuador

    Get PDF
    This paper reports on the long-term re-sight histories of fifteen photo-identified humpback whales encountered to date transiting Ecuadorian waters. It also provides information about connections to feeding area destinations. Whale EC1261 has been resighted over a 26 year span and provides insight into age and potential longevity of this species in the stock G. The resighting of whale EC1261 provides the earliest connection from Ecuador to Antarctica. and supports previous findings that Antarctic Peninsula is the main feeding area of humpback whales migrating to Ecuadorian waters. Although there are only a low percentage of re-sighted animals between Ecuador and the Strait of Magellan, two records represent long-term observations of 17 and 21 years. Resightings of these whales previously confirmed the Straits of Magellan as a feeding area (Gibbons et al, 1998; Gibbons et al, 2003; Acevedo et al. 2007; Capella et al. 2008). These results are based on the individual identification of the ventral surface of humpback whale tails. This method has been used extensively by researchers, NGO’s and government institutions in Antarctica, Chile, and Colombi

    Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Royal Society Open Science 3 (2016): 160616, doi:10.1098/rsos.160616.Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of ‘transiting’ (consistent/directional) versus ‘localized’ (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.Funding was provided by Total Foundation to NeuroPSI, and by individuals and foundations to the WCS Ocean Giants Program
    • 

    corecore