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Abstract

Background: Oysters in coastal environments are subject to fluctuating environmental conditions that may impact
the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services,
particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome
composition are well-known, but functional changes and how they may impact host physiology and ecosystem
functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated
microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult
eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient
gradient in August 2017. Samples were analyzed by 165 rRNA gene sequencing to characterize bacterial community
structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments.

Results: There were significant differences in bacterial community structure between the eastern oyster gut and water
samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and
decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally
active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in
nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing
environmental conditions.

Conclusions: The observed shifts in microbial community composition and function inform how estuarine conditions
affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to
increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine
relationships between host health, microbial community structure, and environmental conditions in benthic communities.

Keywords: Microbiome, 165 rRNA gene sequencing, Metatranscriptomics, Coastal eutrophication, Oysters, Crassostrea
virginica

Background conditions in coastal estuarine ecosystems fluctuate rap-
Coastal ecosystems serve as habitat for highly diverse idly due to changes in nutrient loading, river runoff, and
communities that contribute up to 77% of worldwide other physical, chemical, and biological factors [6-8].
ecosystem services [1, 2]. Humans directly rely on these For example, average pH values in coastal waters can
environments for activities like tourism and fisheries, vary by as much as one pH unit over both daily and sea-
and for their ecosystem services [3-5]. Environmental sonal cycles, reflecting changes in biological outputs like

microbial activity, ambient dissolved oxygen (DO), and
* Correspondence: gomezchi@uriedu pCO, [9, 10]. These frequent changes in estuarine water
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geomorphology, and these influences will likely increase
over the coming decades [11].

Estuaries such as Narragansett Bay, Rhode Island,
USA, provide a natural gradient to study the impacts of
eutrophication. The head of the Bay, located in a highly
urbanized area, is highly eutrophic while trophic levels
at the mouth are more similar to those found over the
continental shelf [12, 13]. Previous studies have shown
that eutrophication in the headwaters of Narragansett
Bay affects many local communities and ecosystem pro-
cesses at locations downstream, including nitrification
rates [14], primary productivity [15], animal physiology,
and benthic biodiversity [16, 17]. Over the last 20 years,
Narragansett Bay has undergone dramatic changes as a
result of targeted efforts to reduce nutrient loading, pro-
viding a dynamic model for the study of gradients in es-
tuarine eutrophication [18].

Marine microbial communities play a central role in
ecosystem function as the engine for carbon and nutri-
ent cycling. Microbial communities in coastal seawater
and sediment exhibit plastic responses to environmental
changes or gradients [19-22]. This may lead to changes
in primary productivity, and therefore coastal ecosystem
functioning [23]. Studies of bacterial community struc-
tures and nitrogen cycling in several coastal lagoons
found that physical gradients and nutrients affect sedi-
ment microbial interactions and function [19, 24]. In
marine sediments exposed to high nutrients, studies re-
ported dramatic changes in ecological function, but no
significant differences in microbial community structure
[25-27].

Host-associated microbiomes are gaining importance
as major contributors to ecosystem services and host
functioning [28, 29]. Various studies have found that en-
vironmental conditions affect microbial community
structures in marine hosts, including corals [30], sponges
[31], eelgrass [32], seagrass [33], oysters [34] and mussels
[35]. Varying pollution levels alter Manila clam, Rudi-
tapes philippinarum, microbiome composition and host
susceptibility to chemicals, as well as kelp bacterial com-
munity composition [36, 37]. Studies that examine host-
associated microbial functional responses to environ-
mental change, however, are limited to survey studies
and focus on model organisms (i.e. corals or zebrafish)
in lab-based studies [38]. For example, a study of foun-
dational corals found that nutrients did not affect the
host fitness or health, but caused shifts in certain micro-
bial taxa that may influence microbial function [30].

In Narragansett Bay, as in other temperate coastal
estuaries, the eastern oyster, Crassostrea virginica, is
an integral part of the local history, culture, and sea-
food industries. Moreover, oysters provide many eco-
system functions, including clearing of overlying
waters, coastal erosion prevention, and nutrient
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cycling [39]. Oyster-associated microbiomes signifi-
cantly contribute to these ecosystem services, as the
oyster host retains and provides a habitat for specific
bacteria that perform denitrification and assimilate ex-
cess phosphorus [40, 41]. Microbes may also aid in
maintaining oyster health and homeostasis by control-
ling infection, performing nutrient removal, or provid-
ing metabolites [42-44].

Previous studies of microbial ecology in oysters and
other hosts have been limited to surveys of microbial
community structures in different compartments of the
host. There are, however, very few studies investigating
the impact of environmental change on the function of
host-associated microbiomes, and how those functional
changes may affect coastal ecosystem function. The
microbiomes of adult oysters, as determined by 16S
rRNA gene amplicon sequencing or other genetic
markers, vary with location [45, 46], season [34], tissue
type [47], disease status [43, 48, 49], and environmental
conditions [50]. Some studies have attempted to infer
oyster-associated microbial function from 16S rRNA
gene amplicon sequencing, but this method relies on
phylogenetically conserved function and is largely specu-
lative [51, 52]. In this study, we evaluated the structure
and function of eastern oyster, C. virginica, gut micro-
biomes at five sites along the eutrophication gradient in
Narragansett Bay using 16S rRNA gene amplicon se-
quencing and metatranscriptomics. This survey provides
a snapshot of the oyster microbiomes in a relatively
small geographic area in a temperate coastal estuary af-
fected by eutrophication, and how these host-associated
microbiomes are affected by their local environment.

Results

Sampled sites showed variability in environmental
conditions

Five sites were selected along Narragansett Bay: 1.PVD
(Providence River: Bold Point Park), 2.GB (Greenwich
Bay: Goddard Memorial State Park), 3.BIS (Bissel Cove:
Rome Point), 4NAR (Narrow River), and 5.NIN (Nini-
gret Pond) (Fig. 1). These sites are representative of a di-
versity of environmental conditions (i.e. nutrients,
dissolved oxygen, pH, salinity) within a coastal estuary
and varying levels of anthropogenic inputs (Table 1). A
North-South estuarine gradient was detected, especially
in nutrient concentrations. Salinity, pH, and DO in-
creased down the Bay from Providence (1.PVD; North)
to Ninigret Pond (5.NIN; South), as coastal eutrophica-
tion and the influence of river inputs decreased (Table 1,
Spearman’s Correlation Coefficients, SCC =-0.8, - 0.8, -
0.9). Nutrient concentrations decreased along the North-
South gradient (Table 1, SCC =0.7, 0.6, 0.9), with 1.PVD
showing significantly higher concentrations of nitrite, ni-
trate, and phosphate than all other sites (p<0.01). A
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Fig. 1 Map of study area with 5 sampling locations. A schematic of the samples collected from each site is shown in the bottom right
.
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Principal Component Analysis (PCA) of these measured
environmental conditions (each averaged per site), with
eigenvalues in components one and two representing
80% of the environmental variation between sites is
shown in Fig. 2. Each site was characterized by a subset
of environmental factors over the sampling period. The
1.PVD site was characterized by the highest nutrient
levels (nitrite, nitrate, phosphate, p <0.01, compared to
all other sites), 2.GB by the highest chlorophyll-a, 3.BIS
by the highest ammonium concentrations (p < 0.001),
4NAR by a higher temperature (NS) and significantly
lower salinity than all other sites (p = 0.045), and 5.NIN
by significantly higher pH than all other sites (p = 0.023).
The average mass, length, and width of oysters at each
site decreased down the Bay, with the exception of oys-
ters from 3.BIS, which were significantly heavier and lar-
ger than oysters collected at other sites (Table 1, SCC =
0.7,0.7,0.8; p < 0.001).

Differences in microbial community structures were
observed between sites and sample types

A total of 2,217,804 quality-controlled, bacterial 16S
rRNA gene sequences were analyzed from 50 gut sam-
ples and 10 water samples from 5 sites (Table S1). The
sequenced mock community and blank control were an-
alyzed to confirm absence of contamination and ad-
equate sequencing proportions (Fig. S1B). Sequence
variant analysis and taxonomic classification resulted in
the detection of 304 bacterial Orders across 45 Phyla
across all samples, which sufficiently covered the esti-
mated diversity in the samples (Fig. S2). The most dom-
inant phyla in the eastern oyster gut samples, averaged
for all oysters at all sites, were Cyanobacteria (38 + 18%)
Proteobacteria (21 + 13%), Tenericutes (6+12%) and
Actinobacteria (3 +2%) (Fig. S1A). The most dominant
phyla in the water column, averaged from all sites, were
Proteobacteria (62 £ 10%), Cyanobacteria (15 +12%),
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Table 1 Summary of all measurements collected per site. Environmental values are daily averages + standard deviation measured at
each site 1 day during week of collection. Nutrient values are averages of three-point water samples collected from each site at time
of oyster collection. Spearman’s correlation coefficient (SCC, — 1 to 1) was calculated for the association between each parameter
and Latitude. The most significant SCC values (| 2 0.8]) are shaded green. A value closer to 1 indicates that the parameter decreases
from North-South (1.PVD to 5.NIN) and a value closer to — 1 indicates that the parameter increases from North-South. A correlation
coefficient of 0 means there is no linear association and that the value does not consistently change along the estuarine gradient.
Significant values as compared to the other sites are indicated in bold. *Spearman’s correlation coefficient for Salinity without 4.NAR:

-0.8

1.PVD 2.GB 3.BIS 4.NAR 5.NIN SCC
Location (GPS | 41.816, 41.654, 41.545, 41.505, 41.358, !
coordinates) -71.391 -71.445 -71.431 -71.453 -71.689

17-Aug- 18-Aug- 22-Aug- 22-Aug- 25-Aug-
Sampling Date 2017 2017 2017 2017 2017
Water filtered (mL) 800 600 700 200 900
Environmental
Temperature (°C) 23+1 2441 2342 250 2342 -0.3
Salinity (psu) 2542 28+0 30+0 18+0 29+1 -0.2*
pH 7.4+0.0 7.4+0.2 7.94+0.0 7.6+£0.2 8.2+0.0 -0.9
Chlorophyll- a (ug/L) 8.1+4.0 18.8+7.5 49+2.8 4.6+1.3 3.8+0.4 0.9
Dissolved - Oxygen | 4 9. 5 5.743.1 8.2+1.0 7.0+1.9 9.5+3.5 -0.9
(mg/L)
Nutrients
Ammonium (uM) 7.6+0.1 5.6£0.9 45.8+0.8 1.6£1.1 13.94+0.1 -0.1
Nitrite (uM) 0.7+0.0 0.0£0.0 0.1+£0.2 0.0+£0.0 0.0+£0.0 0.7
Nitrate (uM) 9.7+0.1 1.9+0.2 2.1£0.3 2.340.1 0.9+0.1 0.6
Phosphate (uM) 3.7+0.1 1.6+0.1 0.7+0.1 0.1+£0.0 0.2+0.0 0.9
Oyster Characteristics
(n=30)
Average mass (g) 125+36 94+33 166+83 53+1 44.2+8.4 0.7
Average length (mm) 98+21 84+11 104+21 76+9 T1£7 0.7
Average width (mm) 68+9 6+6 679 48+7 5247 0.8

Bacteroidetes (15 £ 7%), and Actinobacteria (3 + 2%) (Fig.
S1A). Differences in bacterial community structures
were observed between the oyster gut and water sam-
ples, in addition to between sites for both sample types
(gut and water) (Figs. 3 and 4, and S3).

Effect of sample type on microbial community structures

The structure of the gut microbiome was distinct from
the water microbial community, regardless of the sam-
pling site (Fig. 3b, stress =0.19, df=4, PERMANOVA
R*=0.46, p =0.001). Of the 304 Orders detected in the
16S amplicon data, the water and gut samples had 135
(45%) Orders in common, while 8 (2%) were exclusively
found in the water and 161 (53%) were found only in
the oyster gut, suggesting selection by the host (Fig. 4a).
LEfSe analysis revealed 22 Orders significantly more
abundant in the water than the gut samples, including

Flavobacteriales, Rhodobacterales, Rhodospirillales, and
Oceanospirillales (Figs. 4b and S4A, LDA > 2, p <0.05).
Conversely,  Corynebacteriales,  Propionibacteriales,
Desulfobacterales, and Mycoplasmatales were some of
the 14 Orders more abundant in gut samples (Figs. 4b
and S4A, LDA > 2, p < 0.05). Significantly more unknown
bacterial Orders were detected in the oyster gut samples,
compared to the water (Fig. 4b, t-test p < 0.001).

Effect of site on microbial community structures

The oyster gut bacterial communities from each site
were significantly different at the ASV level (Fig. 3b,
Table S2, df=4, stress=0.19, PERMANOVA R*=0.15,
p =0.001). Samples from 1.PVD and 3.BIS showed sig-
nificantly lower alpha-diversity (Fig. 3a, Simpson’s Index;
p< 0.01) than samples at other sites. This correlated
with specific microbial signatures found at each site. For
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Fig. 2 Environmental conditions characterizing each site. Principal component analysis of each site is represented by a colored symbol and each
environmental factor is represented with an arrow. Orange arrows indicate average environmental values measured in situ during the sampling
week (n = 2); light blue arrows represent nutrient concentrations measured from water samples (n = 3)

example, Corynebacteriales and Synechococcales were
significantly more abundant in the gut samples from
4.NAR and 5.NIN than at other sites, and Verrumicrobia
were significantly more abundant at 4.NAR than in
others sites (Figs. 4b and S4B, LDA >2, p<0.05). The
within-site variability of oyster gut microbiomes was sig-
nificantly higher at the Northern sites (1.PVD, 2.GB,
3.BIS) than at the Southern sites (4.NAR, 5.NIN) (Fig.
3¢, Bray-Curtis; p = 0.001).

Opyster gut samples at 2.GB showed significantly higher
percentages of chloroplast-associated 16S rRNA gene
amplicons (50 +27%), which is consistent with high
chlorophyll-a levels measured at this site (Figs. 2 and
S4B, LDA > 2, p <0.05). These sequences were removed
prior to calculating dissimilarity metrics. Oyster gut
samples from all sites shared 105 Orders (34% of 304
total), while 9-31 (3-10%) Orders were distinct to gut
samples at certain sites (Fig. S3).

Transcriptionally active microbial community structures
differ from ASV community structures

A total of 409 million metatranscriptomic 150 bp-long,
quality-controlled paired-end reads were obtained from
25 gut samples (n=5 per site; Table S1), which suffi-
ciently covered approximate 97.6 + 0.4% of the diversity
in the samples (Fig. S2). Direct taxonomic annotation of
these merged paired-end reads classified 2.35 +0.02%
microbial reads (Table S1). This level of annotation is
comparable with other studies in host-associated sys-
tems and most probably due to incomplete taxonomic
coverage in reference databases and high levels of host
nucleic acids [24, 33, 53]. Gene classification using
marker ribosomal genes was not possible due to the
rRNA depletion performed during library prep and sub-
sequent biased removal of these common taxonomy
markers [54]. Other commonly used methods based on
house-keeping genes are not useful with environmental
samples as the ones in this study, most probably due to
the incomplete levels of annotation of these marker
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Fig. 3 Effect of site and sample type on diversity indices in present bacterial community structures. a Simpson’s Index of Diversity calculated
using ASV-level 165 rRNA gene amplicons for gut samples (left, n=10) and water samples (right, n = 2). Global p-values were calculated using the
Kruskal-Wallis rank-sum test, and pairwise p-values were calculated with the Wilcox rank-sum test. b NMDS plot visualization of Bray-Curtis beta-
diversity (k= 2) at the ASV level for gut samples by Site (left) and all samples by Type (right). The ellipse lines show the 95% confidence interval
(standard deviation). p-values indicate significance of grouping with adonis2 Permutational Multivariate Analysis of Variance Using Distance
Matrices test. ¢ Within site Bray-Curtis dissimilarity index values for gut samples (n = 90; 9 comparisons for each of 10 samples per site). Global p-
value was calculated using the Kruskal-Wallis rank-sum test, and pairwise p-values were calculated with the Wilcox rank-sum test

genes in these sample types [55]. Sixty-eight bacterial
Orders across 29 Phyla were detected in the taxonomic-
ally annotated reads, of which 36 (53%) were also de-
tected in the gut 16S amplicon data. The most active
annotated phyla in the gut samples (all oysters) were
Proteobacteria (46 +5%) and Firmicutes (16 + 8%) (Fig.
4b). The most active taxa (Bacillales, Pseudomonadales,
and Enterobacterales; as detected in the metatranscrip-
tomes) were not the most abundant taxa (Cyanobaceria,
Mycoplasmatales, and Unknown Proteobacteria; as de-
tected by 16S rRNA gene amplicon analysis) (Fig. 4b).
There were 103 (out of 296, 35%) Orders detected in the
oyster gut 16S amplicons that were not detected in the

metranscriptomes, most likely due to methodological
biases (Figs. S2 and Fig. 4a).

While microbiome structures of oyster gut samples (de-
tected by 16S rRNA gene amplicon analysis) showed differ-
ences between sites (Fig. 3b), microbiome structures of the
active taxa (determined by taxonomic annotation of meta-
transcriptomic reads) in the gut samples were not different
between sites (Fig. S5, species level). This may be due to the
higher number of species detected using the metatranscrip-
tomic approach as compared to the more conserved 16S
rRNA gene amplicon sequencing, as seen by comparing the
“core microbiome” detected with each method (taxa occur-
ring in >80% of samples, Fig. S6 and Table S3).
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Metatranscriptomic analysis detected a higher number of
conserved species, as compared to the 16S rRNA gene
amplicon analysis (72 conserved taxa in metatranscriptomes
compared to 15 16S rRNA gene ASVs). Of those, only 2 taxa
were identified by both methods, including a Propionibacter-
iaceae and a Synechococcus sp. The largest portion of the
conserved sequences in both datasets corresponded to the
Gammaproteobacteria, with 21 and 3 annotated taxa in the
metatranscriptomic and 16S rRNA gene amplicon datasets
respectively, followed by Actinobacteria (7 and 2 respect-
ively). Gammaproteobacters conserved in oysters from
Rhode Island waters included several Aeromonads, Entero-
bacters, Pseudomonads, and Vibrionales as identified by the
metatranscriptomic dataset. Other conserved taxa uniquely
detected by the metatranscriptomic dataset included anno-
tations to Acidobacteria (1), Bacteroidetes (2), Chlamydia
(1), Firmicutes (12 bacilllales and 5 clostridiales), Fusobac-
teria (1), Spirochaetaceae (1), and Verrumicrobiales (1). On
the other hand, the 16S rRNA gene analysis detected one
conserved ASV in the mollicutes (Fig. S6 and Table S3).

Transcriptional responses in the oyster gut microbial
community reflect the estuarine gradient in Narragansett Bay
Although no significant differences were detected be-
tween sites on the taxonomy of the transcriptionally ac-
tive microbial taxa in the gut tissue (Fig. S5), their

transcriptional responses varied based on the environ-
mental conditions at each site (Fig. 5). In order to in-
crease statistical power in the characterization of
environment (i.e. eutrophication) on gene expression,
the microbial transcriptional response at the more eu-
trophic/urbanized northern sites (1-3) was compared to
that of the southern sites (4—5; considered as the less ur-
banized “control group”). This resulted in 11 SEED
Level-1 pathways that showed significantly differential
gene expression between northern and southern sites. A
significant upregulation of bacterial stress responses and
general metabolic activities (carbohydrates, respiration,
amino acids, fatty acids, lipids etc.) was seen at northern
sites, as well as a downregulation of photosynthesis,
metabolic transport, and motility and chemotaxis (Benja-
mini-Hochberg adjusted p <0.05; Fig. 5a). Select path-
ways were then further analyzed by comparing gene
expression at each site to the mean of all sites.

Stress response

In order to further examine the effects of anthropogenic
factors (e.g. eutrophication, urbanization) on oyster mi-
crobial community and function, a more in-depth ana-
lysis of differences in the expression of genes involved in
stress responses and nutrient cycling was performed
(SEED level 2 annotation). Differential expression of
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genes in stress response and nutrient pathways at each
of the sites was compared to the mean level of expres-
sion at all other sites (Figs. 5 and 6b). A significant up-
regulation in the expression of microbial genes involved
in dealing with osmotic stress was detected in samples
from 2.GB (as compared to the mean of all sites), as well
as a significant downregulation in genes involved in peri-
plasmic stress (p < 0.05). Conversely, a significant upreg-
ulation in genes involved in periplasmic stress (e.g. rseA,

degS, deQ) and downregulation in genes involved in os-
motic stress (e.g. genes coding for betaine aldehyde de-
hydrogenase and choline dehydrogenase) and oxidative
stress (e.g. genes coding for NAD G3P dehydrogenase)
was detected in oyster gut samples from 5.NIN (p < 0.05,
Fig. 5b, S7, and S8). Expression of microbial genes in-
volved in other acute stress responses, including acid
stress, cold shock, and heat shock, were not significantly
different between sites.
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Nitrogen metabolism

Nutrient cycling is central to ecosystem services pro-
vided by oysters. Nitrogen and phosphorus are especially
important, since they are the major components of eu-
trophication and often limiting factors to primary pro-
duction [11, 56]. No significant changes in expression of
genes involved in overall nitrogen metabolism (SEED
level 2 annotation) was observed in the gut oyster micro-
biome from the different sites (Fig. 6a top), despite the
significant differences in levels of nitrate, nitrite, and
ammonium levels detected between sites (Table 1). High
levels of variability in the expression of genes involved in
the different pathways involved in nitrogen metabolism
were observed between oysters within sites. Significant
differences between sites were observed, however, in the
patterns of expression of genes from specific pathways
involved in nitrogen metabolism (SEED level 1 annota-
tion; Fig. 6a bottom), reflecting differences in the re-
sponses of oyster gut microbes to the environmental
conditions at each site. At the northernmost site
(1.PVD), there was a significant downregulation of de-
nitrification and NO detoxification-related genes (e.g.
nosF and cytochrome c-dependent nitric oxide reductase
(cNor)) compared to the mean of all sites, while at the
southernmost site (5.NIN), a significant upregulation of
genes involved in ammonia pathways (e.g. genes coding
for NR(I), GNLE, and nitrate reductase) and a downreg-
ulation of nitrilase genes was observed (p < 0.05, Fig. S9).

Phosphorus metabolism

Expression of genes in the oyster gut microbiome in-
volved in phosphorus metabolism decreased down the
Bay, with microbial communities in the guts of oysters
from the most southern (5.NIN) and northern (1.PVD)
sites respectively showing significantly lower and higher
levels of expression of genes involved in phosphorus me-
tabolism than the mean of the sites (p <0.01; Fig. 6b
top). An upregulation of genes involved in the phosphate
pathway (e.g. alkaline phosphatase) was observed in the
gut microbiome of oysters from the northernmost site
(1.PVD), as well as an upregulation of genes in the
phosphonate pathway in oysters from 2.GB (e.g. phos-
phonoacetaldehyde hydrolase) (Fig. S6b bottom and
S10). These two sites also showed the highest ambient
phosphate concentrations (Table 1). Conversely, there
was a significant downregulation of phosphate and
phosphonate pathways at the southernmost site com-
pared to the mean of all sites (5.NIN, p <0.01, Fig. S6b
bottom).

Discussion

A Dbetter understanding of the effect of environmental
conditions on both the structure and function of oyster-
associated microbes is important for the management of
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oyster populations and optimization of the ecosystem
services they provide. This study characterized the com-
position and function of eastern oyster-associated micro-
biomes at sites within a temperate, urbanized estuary.
Oyster gut microbiomes during the summer were di-
verse in composition and differed between sites. Differ-
ences between the structure of microbiomes between
water and oyster gut were consistent with selection and
amplification of taxa from the water environment by the
oyster host, as described in previous work [50]. Signifi-
cant differences in expression of several gene pathways
(stress response, nutrient utilization) were observed be-
tween sites, reflecting the environment at each of the
sites. In particular, the gut microbial community of oys-
ters collected at the northern sites, experiencing higher
levels of nutrients and anoxia, showed upregulation of
genes associated with stress response and phosphorus
metabolism, as compared to the less eutrophic southern
sites. Microbes in the gut of oysters from the less eu-
trophic sites showed a relative upregulation of genes as-
sociated with nitrogen metabolism. These responses
varied according to the eutrophication gradient, indicat-
ing that the responses of oyster gut-associated micro-
biomes reflect the local environment, despite the fact
that they are located within the host (i.e. the oxygen and
nutrient status of the water is pervasive in the oyster
gut). This is the first study combining 16S rRNA gene
amplicon and metatranscriptomic data to look at both
the composition and function of microbes associated
with bivalves in an estuarine eutrophication gradient,
with findings that are relevant to the development of
restoration projects geared to maximize ecosystem ser-
vices provided by oysters.

Surprisingly, expression of certain pathways involved
in nitrogen metabolism in oyster-associated micro-
biomes was significantly higher at sites with the lowest
levels of nutrients (NO,~, NO3~, NH,") in the water at
the southern range of the estuarine gradient than at the
more eutrophic northern sites. These results are consist-
ent with previous findings showing that oxygen condi-
tions control nitrogen and phosphorus cycling in the
sediments by limiting nutrient availability [57], with high
dissolved oxygen concentrations in water promoting ni-
trogen removal [58]. This interaction between oxygen
concentration (or redox state) and nitrogen metabolism
has been well-documented in marine sediments: higher
DO and low NO;3;~ concentrations stimulate denitrifica-
tion, while the opposite occurs with high NO3;~ concentra-
tions [59, 60]. Our findings indicate that the environment
in the oyster gut, as it relates to N and P cycling, reflects
the overall environmental conditions at the site, consistent
with expectations from sediment and water column obser-
vations. In the more eutrophic, anoxic, and acidic waters
of the Providence River, where there is no available
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ammonia, oyster-associated microbiomes would upregu-
late pathways using the phosphate available from the sedi-
ment [61, 62]. Oysters in these northern sites may have
been enriched in microbes adapted to prefer phosphate
over nitrogen, due to selection driven by prevailing envir-
onmental conditions. Alternatively, higher levels of ex-
pression of genes involved in ammonia and nitrate
utilization at the southern sites, in which less eutrophic
conditions were found for nitrite, could reflect a physio-
logical compensation driven by a need to scavenge the
lower amounts of nitrate at these sites [63]. This is, how-
ever, not observed for phosphate. The potential similarity
in function of microbes involved in N and P cycling be-
tween oyster gut and seawater/sediment may be explained
by unique aspects of the physiology and anatomy of bi-
valves like oysters. Bivalves are ectotherms with an open
circulatory system, and perform high levels of filtration
when actively feeding [64, 65]. Therefore, we hypothesize
that the particular nutrients (N, P compounds) and condi-
tions (DO, pH) driving N and P cycling, must be, overall,
similar in the oyster gut to the ambient water
environment.

Microbiomes in the gut of eastern oysters collected at
each of the sites also reflected potential stressors at each
of the sites. For example, the increase in microbial oxi-
dative stress observed at 1.PVD and 2.GB has been
widely observed in microbial communities in response
to anoxia, pollution, and toxins [66, 67]. The upregula-
tion of periplasmic stress response (due to stressors
within the inner bacterial membrane) observed in sam-
ples collected at site 5.NIN is likely coupled with in-
creased nitrogen metabolism and transport [68—70]. In
general, as eutrophic conditions worsen, bacteria will ex-
pend more energy on stress response and metabolic ac-
tivities, a trend that has also been shown in marine
sediment microbiomes [71, 72]. Other stressors, includ-
ing pathogens, toxins, or chemical pollutants may have
contributed to the differential expression in stress re-
sponse pathway between sites and require further study.

Comparison of the microbial composition between
water and oyster samples suggest that oysters select and
amplify certain bacterial species through feeding selec-
tion, niche colonization, and/or evasion of immunity, as
shown in oysters and other invertebrate host species [73,
74]. The fact that bacterial composition in gut samples
does not completely reflect the community in the water
samples may indicate that oysters amplify rare members
in the water community and/or retain bacteria previ-
ously acquired through time horizontally from the water
or vertically from parents. Consistent with the hypoth-
esis of amplification, certain bacterial taxa that are
known intracellular anaerobes were relatively more
abundant in gut than water samples. These include
members of the Mycoplasmatales, Mollicutes, and
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Clostridiales. Mycoplasmatales have been identified as
common invertebrate symbionts and are avid biofilm-
formers, allowing them to survive and replicate in the
host [75, 76]. Besides these intracellular bacteria, Proteo-
bacteria formed the most abundant and active phylum
in the overall community, consistent with published lit-
erature in oysters [34, 48, 77]. High variability in the
relative abundances of certain taxa (i.e. Mycoplasmatales
or Caulobacterales) among oysters within sites suggests
that host acquisition of bacteria from surrounding wa-
ters is shaped not only through exposure during feeding,
but also factors like host health, characteristics, origin,
and/or genetics [42, 78]. Further examination of within-
site variability and its relationship with other host pa-
rameters (e.g. health and physiological status, genetics)
may reveal how certain taxa are promoted in each oyster
[79]. Decreased microbial diversity has been associated
with health-compromised hosts, which may limit their
plasticity and ability to respond to environmental change
[48, 80]. Conversely, microbiomes of unhealthy hosts
may be associated with an increase in diversity in tissues
other than the usually more microbially diverse gut, as
opportunistic and pathogenic bacteria proliferate in
these tissues when compromised by disease [81, 82]. The
interplay between the environment, oyster-associated
microbiomes, and host health will be the focus of further
study.

The differences in microbial composition observed in
oyster gut samples between the 16S rRNA gene and the
metatranscriptomics data were not unexpected, consid-
ering that metatranscriptomes reflect actively transcrib-
ing taxa, while the 16S rRNA gene amplicon method
detects both live and recently dead microbes [83]. Al-
though a small percentage of the metatranscriptomic
reads were annotated, this method was able to capture
the annotated microbial diversity at the species level.
There are other potential technical biases that could
have affected differences in microbial composition as de-
termined by these two different methods, including PCR
bias introduced in the process of amplification of the
16S rRNA gene portion, RNA degradation during stor-
age, and issues related to uneven annotation between
taxa [84, 85]. Although we have tried to minimize the
impacts of these biases through the inclusion of several
quality controls commonly used in microbiome research
(e.g. mock communities, the use of technical and bio-
logical replicates and complementary analyses methods)
[86], these biases should also be considered in the inter-
pretation of these results. Despite technical challenges,
comparisons between the 16S rRNA gene amplicon data
with metatranscriptomic analysis of the oyster-associated
microbial community, however, may provide some initial
insights into identification of which of the core microbes
show a symbiotic relationship with the oyster host, versus
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those that are transient food in the gut (i.e. accumulate in
the oyster gut through association with food selectively
ingested by oysters through filter feeding) [50, 87]. In par-
ticular, of the selected taxa shown to be relatively more
abundant in the gut samples as compared to the water, a
subset was detected to be transcriptionally active, particu-
larly Bacillales, and Vibrionales, suggesting that these bac-
teria are not immediately digested in the gut or eliminated
by the immune system. These results are consistent with
the fact that these taxa are commonly cultured from oys-
ter samples [48, 50, 88, 89]. Conversely, despite the high
relative abundance of Synechococcales and other Cyano-
bacteria detected both in oyster gut samples and water
from some of the sites through 16S rRNA gene amplicon
sequencing, the gut metatranscriptomes did not show a
relative enrichment in levels of expression of genes in-
volved in recent photosynthesis, suggesting this higher
abundance was transient and a reflection of recent feeding
activity.

Conclusions

This study has implications for quantification of ecosys-
tem services provided by eastern oyster restoration and
aquaculture. In Narragansett Bay, oyster fisheries were a
dominant industry in the late 1880s, but a combination of
pollution, overfishing, and dredging lead to the collapse of
oyster populations in the 1940s [90]. In recent years, nu-
merous efforts have been made to renew oyster reefs and
restore their ecosystem services in Narragansett Bay. A
common goal of oyster restoration projects is improve-
ment of water quality by stimulation of environmental de-
nitrification [39, 40]. Our findings support that removal of
bioavailable nitrogen by denitrification, an important eco-
system service provided by oysters, declines in low oxygen,
nutrient rich environments [62, 91, 92]. Enhanced denitri-
fication would occur at high dissolved oxygen and nutri-
ent rich environments, such as the conditions observed at
4NAR during the summer. This implies that if the envir-
onmental microbial community does not have the genes
necessary for the nitrogen pathway and/or the environ-
mental conditions do not favor the process, then the
addition of oysters to the site will not promote the ecosys-
tem service. The prevailing environmental conditions and
function of the resident environmental microbial commu-
nity should be considered when selecting sites for oyster
farming and restoration. In this study, 4.NAR and 5.NIN
would provide the greatest return on investment for a res-
toration project, if only the benefits of denitrification are
considered.

In summary, the estuarine gradient affected eastern
oyster-gut associated microbial communities through
changes in community composition, microbial stress re-
sponses, and microbial nutrient utilization. Combined,
these results have implications for environmentally-
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driven changes in oyster microbial acclimation and po-
tential ecosystem services. As the effects of estuarine
acidification are expected to increase due to the com-
bined effects of eutrophication, coastal pollution, and cli-
mate change, it is important to determine relationships
between host health, microbial community structure,
and environmental conditions. The results presented
here form a baseline for future studies exploring how
human-driven estuarine acidification affect overall oyster
health and their associated ecosysem services.

Methods

Sample collection

Five sites were selected along Narragansett Bay, Rhode
Island, USA and wild eastern oysters, C. virginica, were
collected from the northern 4 sites, and farmed oysters
were collected from 5.NIN (no wild oysters were found).
Environmental data for temperature, pH, DO, salinity,
and chlorophyll-a were collected using a YSI 6 Series
Multiparameter Water Quality Sonde (Model 6920VYS)
every 30s for 15min at each site during the morning
and afternoon hours on 1 day of the week of sampling,
and averaged to account for diel variation in these pa-
rameters [93]. Sample collections were completed at low
tide at each site from August 17-25, 2017 and consisted
of oyster and water samples at each of the 5 sites with
scientific collector’s permit #212 granted by the RI De-
partment of Environmental Management. A total of 150
oysters (30 per site) were randomly collected within a 10
m? transect at each of the 5 sites. On the day of collec-
tion, whole oysters (with shell) were weighed, shell width
and length was measured, and samples of gut tissues
(around 300 mg) were dissected and immediately pre-
served in RNAlater (Invitrogen) for RNA/DNA extrac-
tions. Preserved tissue samples were stored at - 80°C
until nucleic acid extractions. Up to 1L of seawater was
collected from the location and depth at which the oys-
ters were collected in each site. Duplicate seawater sam-
ples were filtered using a peristaltic pump onto a
0.22 um Sterivex filter (Millipore Sigma), filled with 2
mL of RNAlater, and then stored at — 80 °C until DNA
extraction. An additional sample of seawater (30 mL)
was filtered through a 0.22 um syringe-top Polyether-
sulfone (PES) filter and frozen at - 80°C for nutrient
analyses. Nutrient concentrations (nitrite, nitrate, ammo-
nium, and phosphate) were analyzed in triplicate using a
Lachat QuickChem QC8500 automated ion analyzer op-
erated by the University of Rhode Island Marine Sci-
ences Research Facility.

Gut DNA and RNA extraction

Total nucleic acids were extracted from 150 to 200 mg of
gut tissue (n = 10 random oysters per site; 50 total) using
the Qiagen Allprep PowerViral DNA/RNA extraction kit
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with modifications as follows. The gut tissue sample was
added directly to a 0.1 mm glass bead tube (Qiagen), along
with 600 uL of Solution PV1 and 6pL of sterile f-
mercaptoethanol to minimize RNA degradation. The sam-
ples were subjected to bead beating for 5 min, followed by
proteinase K digestion at 55 °C for 1 h in a shaker at 300
rpm. The supernatant was transferred to a new microcen-
trifuge tube and the protocol continued according to the
manufacturer’s recommendations. Following nucleic acid
extraction, the concentration was quantified using a
Nanodrop 2000 instrument (ThermoFisher).

RNA purification from a 5 pL total nucleic acid aliquot
was performed using the DNase Max I kit (Qiagen) ac-
cording to the manufacturer’s protocol in a 50 pL reac-
tion volume for 5 oyster gut samples per site. DNA
purification of a 30 pL total nucleic acid aliquot was per-
formed using an adapted version of the DNeasy Power-
Lyzer PowerSoil Kit. In brief, the total nucleic acids were
transferred to a new 2 mL microcentrifuge tube, 1200 pL
of Solution C4 was added, then vortexed. Next, 4 uL of
RNase A solution was added to the sample and incu-
bated for 2 min at room temperature. The treated DNA
was loaded to a spin column, washed with Solution C5,
and eluted in 50 pL of Solution C6. DNA and RNA con-
centrations were quantified with both a Nanodrop 2000
instrument (ThermoFisher) and Qubit Fluorometer
High-Sensitivity reagents (Invitrogen).

Seawater DNA extraction

Total DNA from water samples was extracted from the
duplicate Sterivex filters using the Qiagen Allprep
PowerViral DNA/RNA and DNeasy PowerLyzer Power-
Soil kits with modifications as follows. The RNAlater
was flushed out of the filters using a sterile syringe, and
filters were rinsed with 2 mL of 1X sterile nuclease-free
Phosphate Buffer Saline (PBS, pH 7.4, Invitrogen). Solu-
tion PV1 (1800 puL) and B-mercaptoethanol (18 uL) were
added to the filter cartridge and incubated at 37 °C for
30 min. Next, 20 pL of proteinase K was added to the fil-
ter and digested at 55°C for 1h. The supernatant was
flushed from the filter, and the protocol continued ac-
cording to the manufacturer’s recommendations. DNA
was purified from the entire total nucleic acid product
and quantified using the methods described above.

Nucleic acid amplification and sequencing

In order to obtain a comprehensive representation of the
gut microbial community and their activities, 2 types of
sequencing were performed: 16S rRNA gene amplicon
of the V6 region (DNA, a measure of overall compos-
ition) and whole shotgun metatranscriptomes (RNA, a
snapshot of functional activity at the time of collection)
[94]. Amplicons of the V6 region of the 16S rRNA gene
in the 50 gut DNA samples (10 per site), 5 water
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samples, a sample of a mock community (Zymo Re-
search DNA standard I), and blank PCR control were
prepared using 967F/1064R primers. A two-step PCR re-
action using 300 ng of gut DNA or 10 ng of water DNA
was performed in triplicate 33 pL reactions as previously
described [95, 96]. The PCR products were analyzed
with 75 bp paired-end sequencing to obtain overlapping
reads on an Illumina MiSeq at the Genomics and Se-
quencing Center at University of Rhode Island.

The metatranscriptomic libraries were prepared from
2 pg of gut RNA (n =5 randomly selected per site), frag-
mented at 500 nt using Covaris ultrasonification, and
treated with the Illumina Ribo-Zero Gold rRNA Re-
moval Epidemiology Kit prior to library prep to remove
both host and bacterial rRNA. Illumina TruSeq PCR-
free library kits were used to prepare the libraries, and
then verified using both KAPA library quantification kits
and Agilent Bioanalyzer. The resulting metatranscrip-
tomic libraries were sequenced on an Illumina NovaSeq
S4 to obtain 2 x 150 bp paired-end reads at the Yale
Center for Genome Analysis.

Processing and analysis of sequencing data

16S rRNA gene amplicon sequences were demultiplexed
and quality filtered using DADA2 (v1.6.0) implemented
in QIIME2 (v2018.4.0) with additional parameters --p-
trunc-len-r 65 --p-trunc-len-f 76 --p-trim-left-r 19 --p-
trim-left-f 19 to determine analysis sequence variants
(ASVs) [97, 98]. All ASVs were summarized with the
QIIME2 pipeline (v2018.4.0) and classified directly using
the SILVA database (99% similarity, release #132) [99,
100]. Processed ASV and associated taxonomy data was
exported as a count matrix for analysis in R (v3.4.1). Sig-
nificant differences in Orders between sample types or
gut samples at each site were calculated using linear dis-
criminant analysis effect site (LEfSe) implemented on
the Galaxy server [101, 102]. Non-bacterial and chloro-
plast sequences were then removed, and the data was
normalized by percentage to the total ASVs in each sam-
ple for further dissimilarity metric analysis.

All descriptive and statistical analyses were performed
in the R statistical computing environment with the
vegan v2.5.5 and phyloseq v1.28.0 packages [103, 104].
Rarefaction curves and sequencing coverage estimates
were generated using the rarecurve() and rareslope()
commands with sample = [number of reads in smallest
sample] in vegan v2.5.5 [105]. Simpson’s diversity values
were calculated for each sample at the ASV level using
the vegan package and analyzed using the non-
parametric Kruskal-Wallis rank sum test in R. Non-
metric dimensional analysis (NMDS) was used to deter-
mine the influence of sample type or field site on the
ASV-level composition, implemented using vegan. The
Bray-Curtis dissimilarity metric was calculated with k =2
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for max 50 iterations and 95% confidence intervals
(standard deviation) were plotted. Statistical testing of
beta-diversity was done using the PERMANOVA ado-
nis2 test implemented in vegan (method = “bray”, k = 2)
[106, 107]. Within-site variability was calculated using
the command vegdist (method = “bray”, k=2) and the
matrix was simplified to include samples compared within
each site. Additional visualizations were computed using
the ComplexHeatmap v3.9 and UpSetR v1.4.0 packages
[108, 109].

Raw reads from the microbial community metatran-
scriptomes were first quality controlled with Trimmo-
matic software v0.36 with parameters PE -phred33 SLID
INGWINDOW:4:15 MINLEN:70 [110]. Metatranscrip-
tomic analysis was performed using scripts from the
SAMSA?2 pipeline [111], with the following modifica-
tions. The quality-controlled paired-end reads were
combined using PEAR v0.9.10 and then rogue rRNA
reads were removed from the merged reads using
SortMeRNA v2.1 [112, 113]. Taxonomic and func-
tional annotation of the data were performed against
RefSeq and SEED Subsystem databases, respectively,
using DIAMOND v0.9.23 [114]. Core microbiomes
were calculated using a custom script in R to deter-
mine which taxa (16S rRNA amplicons: ASVs; meta-
transcriptomes: species) were present in >80% of the
samples in each dataset.

Custom scripts using DESeq2 v1.14.1 were used to
calculate differential expression between sites using
the command DESeqDataSetFromMatrix(), with
values transformed to account for differences in read
abundance between samples [115]. The resulting
changes in expression at all pathway levels were
exported to R for analysis and visualization using
ggplot2 v3.2.1 and cowplot v1.0.0 [116-118]. Signifi-
cant differences in gene expression are reported
using Benjamini-Hochberg adjusted p-values. NMDS
analysis was used to describe differences in gene ex-
pression between sites, and was calculated at the
species and order level as described above. All proc-
essed sequencing files, bash scripts, QIIME2 artifacts,
and Rscripts to reproduce the figures in the manu-
script are available on Zenodo [119].

Environmental statistical analysis

All statistical analyses of environmental and sequencing
data were performed in R (v3.4.1 R Development Core
Team, 2011) as follows. The environmental principal
component analysis (PCA) was calculated using the
prcomp (scale = TRUE) command implemented in base
stats v3.6.1, and then plotted using autoplot() enabled by
ggfortify v0.4.7 [120]. Significant differences in environ-
mental parameters between sites were determined using
all raw data subset by site and parameter. The data per
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site was compared using the compare_means() com-
mand from the ggpubr v0.2.2 package [121]. The method
for each comparison was defined as “anova” for initial
testing, then “t.test” for pairwise comparisons. Adjusted
p-values were calculated using the Benjamini-Hochberg
method by adding “p.adjust.method = BH” to the com-
mand [115].
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Additional file 1: Figure S1. (A) Percent abundances of the 10 most
abundant phyla for 16S rRNA gene amplicon sequencing data by sample
type and site. All other taxa are grouped into “Others.” Mock community
control samples are shown at the left. (B) Percent abundance of the top
10 most abundant ASVs in the mock community samples. All other taxa
are grouped into “Others.”

Additional file 2: Figure S2. Sequencing coverage analysis for 16S
rRNA gene amplicon (left) and Metatranscriptomic samples (right). (A)
Rarefaction curves for each sample colored by site for gut samples or
water samples. The minimum sample size (raremax) is shown and
indicated with a dashed line on each plot. (B) The slope calculated at the
raremax for each sample is shown. (C) The estimated coverage (100
100*slope) for each sample is shown. Mean coverage and standard
deviation for each method is shown in the bottom right.

Additional file 3: Figure S3. Number of bacterial Orders shared
between the oyster gut and seawater 165 rRNA gene amplicons at each
site (vertical bars). The total number of Orders found in each group is
shown in the horizontal bar graph on the right. Intersections in gray
denote comparisons that include the water samples.

Additional file 4: Figure S4. (A) Linear discriminant analysis Effect Size
(LEfSe) analysis of bacterial Orders in seawater (n = 10), compared to gut
samples (n=50) in the 16S rRNA gene amplicons (one-against-all). (B)
LEfSe analysis of bacterial Orders in gut samples at each site (n=10) in
the 165 rRNA gene amplicons (all-against-all). Only significantly increased
taxa are shown. Significance was determined by LDA score > 2.0, alpha
value = 0.05 for factorial Kruskal-Wallis test, and alpha value = 0.05 for pair-
wise Wilxocon test.

Additional file 5: Figure S5. NMDS plot visualizations of Bray-Curtis
beta-diversity (k= 2) at the (A) Species and (B) Order levels for gut meta-
transcriptomic samples by Site. The ellipse lines show the 95% confidence
interval (standard deviation). p-values indicate significance of grouping
with adonis2 Permutational Multivariate Analysis of Variance Using Dis-
tance Matrices test.

Additional file 6: Figure S6. Heatmap of taxa identified as the core
bacterial community in the (A) 16S rRNA gene amplicon data and the (B)
metatranscriptomic data. Green boxes indicate the presence of the core
taxa in each sample per site. Core taxa was defined as occurring in > 80%
of the samples per sequencing type.

Additional file 7: Figure S7. Differential expression (log fold change) of
SEED Level 4 gene annotation of Oxidative Stress response groups at
each site, relative to the mean of the others. All significantly regulated
genes are outlined in red and annotated with an asterisk (n =5,
Benjamini-Hochberg *padj < 0.05, **padj < 0.01).

Additional file 8: Figure S8. Differential expression (log fold change) of
SEED Level 4 gene annotation of Osmotic and Periplasmic stress
response groups at each site, relative to the mean of the others. All
significantly regulated genes are outlined in red and annotated with an
asterisk (n =5, Benjamini-Hochberg *padj < 0.05, **padj < 0.01).

Additional file 9: Figure S9. Differential expression (log fold change) of
SEED level 4 gene annotation of nitrogen metabolism pathways at each
site, relative to the mean of the others. All significantly regulated genes
are outlined in red and annotated with an asterisk (n =5, Benjamini-
Hochberg *padj < 0.05, **padj < 0.01).
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Additional file 10: Figure S10. Differential expression (log fold change)
of SEED level 4 gene annotation of phosphorus metabolism pathways at
each site, relative to the mean of the others. All significantly regulated
genes are outlined in red and annotated with an asterisk (n =5,
Benjamini-Hochberg *padj < 0.05, **padj < 0.01).

Additional file 11: Table S1. Sequencing summary statistics, including
the number of reads that passed quality control (QC) in each 16S rRNA
gene amplicon and metatranscriptomic sample. No metatranscriptomes
were sequenced for water samples.

Additional file 12: Table S2. Bray-Curtis beta-diversity summary statis-
tics calculated using adonis2 Permutational Multivariate Analysis of Vari-
ance Using Distance Matrices test.

Additional file 13: Table S3. Taxa present in >80% of all samples in
the 16S rRNA gene amplicon and metatranscriptomic datasets. This table
corresponds to Fig. S6.

Additional file 14: Table S4. Raw sequencing data accession
information. This spreadsheet includes BioSample information for each
oyster with corresponding Accession numbers for 165 rRNA gene
amplicon or metatranscriptome files.
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