25 research outputs found

    The Role of Inflammatory Mediators in the Pathogenesis of Otitis Media and Sequelae

    Get PDF
    This review deals with the characteristics of various inflammatory mediators identified in the middle ear during otitis media and in cholesteatoma. The role of each inflammatory mediator in the pathogenesis of otitis media and cholesteatoma has been discussed. Further, the relation of each inflammatory mediator to the pathophysiology of the middle and inner ear along with its mechanisms of pathological change has been described. The mechanisms of hearing loss including sensorineural hearing loss (SNHL) as a sequela of otitis media are also discussed. The passage of inflammatory mediators through the round window membrane into the scala tympani is indicated. In an experimental animal model, an application of cytokines and lipopolysaccharide (LPS), a bacterial toxin, on the round window membrane induced sensorineural hearing loss as identified through auditory brainstem response threshold shifts. An increase in permeability of the blood-labyrinth barrier (BLB) was observed following application of these inflammatory mediators and LPS. The leakage of the blood components into the lateral wall of the cochlea through an increase in BLB permeability appears to be related to the sensorineural hearing loss by hindering K+ recycling through the lateral wall disrupting the ion homeostasis of the endolymph. Further studies on the roles of various inflammatory mediators and bacterial toxins in inducing the sensorineumral hearing loss in otitis media should be pursued

    Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions

    Get PDF
    The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation.The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear.Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation.The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na(+),K(+)-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium.The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control

    Pseudomonas aeruginosa

    No full text

    Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    No full text
    Background. Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective. To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods. A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results. Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice. Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications
    corecore