78 research outputs found

    Assessment of HBV flare in a randomized clinical trial in HIV/HBV coinfected subjects initiating HBV-active antiretroviral therapy in Thailand

    Get PDF
    BACKGROUND: Hepatic Flare (HF) after initiation of highly active antiretroviral therapy (HAART) in HIV-HBV coinfected individuals is well recognized but prospective data on predictors and subsequent outcome are limited. METHODS: The Tenofovir in HIV-HBV coinfection study was a randomized clinical trial of HBV-active HAART including lamivudine and/or tenofovir in antiretroviral naïve HIV-HBV individuals in Thailand. RESULTS: Early HF (EHF) was defined as ALT > 5 × ULN during the first 12 weeks. EHF was observed in 8 (22%) of individuals at a median of 56 days. 6/8 EHF cases were asymptomatic and resolved with HAART continuation, however one subject with underlying cirrhosis died following rapid hepatic decompensation. EHF was significantly associated with higher baseline ALT (79 IU/L vs 36 IU/L non-EHF, p = 0.008) and HBV DNA (9.9 log10 c/ml vs 8.4 log10 c/ml non EHF, p = 0.009), and subsequent serological change. HBeAg loss occurred in 75% of EHF cases versus 22% in non-EHF (p = 0.04), and HBsAg loss in 25% of EHF cases versus 4% of non-EHF (p = 0.053). CONCLUSION: EHF after HBV active HAART initiation was frequently observed in this population. Timing of EHF, association with elevated ALT and HBV DNA and high rate of seroconversion are all consistent with immune restoration as the likely underlying process. CLINICAL TRIAL NUMBER: NCT00192595

    Deep seafloor arrivals : an unexplained set of arrivals in long-range ocean acoustic propagation

    Get PDF
    Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 599-606, doi:10.1121/1.3158826.Receptions, from a ship-suspended source (in the band 50–100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), “deep seafloor arrivals,” that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.The LOAPEX source deployments, the moored DVLA receiver deployments, and some post-cruise data reduction and analysis were funded by the Office of Naval Research under Award Nos. N00014-1403-1-0181, N00014-03-1-0182, and N00014-06-1-0222. Additional post-cruise analysis support was provided to RAS through the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography. The OBS/Hs used in the experiment were provided by Scripps Institution of Oceanography under the U.S. National Ocean Bottom Seismic Instrumentation Pool (SIO-OBSIP—http://www.obsip.org). To cover the costs of the OBS/H deployments funds were paid to SIO-OBSIP from the National Science Foundation and from the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute

    The Lombard effect in singing humpback whales : source levels increase as ambient ocean noise levels increase

    Get PDF
    Funding: Office of Naval Research (Code 322, Marine Mammals and Biology), Commander, U.S. Pacific Fleet (Code N465JR), and the Naval Facilities Engineering Command Living Marine Resources Program.Many animals increase the intensity of their vocalizations in increased noise. This response is known as the Lombard effect. While some previous studies about cetaceans report a 1 dB increase in the source level (SL) for every dB increase in the background noise level (NL), more recent data have not supported this compensation ability. The purpose of this study was to calculate the SLs of humpback whale song units recorded off Hawaii and test for a relationship between these SLs and background NLs. Opportunistic recordings during 2012-2017 were used to detect and track 524 humpback whale encounters comprised of 83 974 units on the U.S. Navy's Pacific Missile Range Facility hydrophones. Received levels were added to their estimated transmission losses to calculate SLs. Humpback whale song units had a median SL of 173 dB re 1 μ Pa at 1 m, and SLs increased by 0.53 dB/1 dB increase in background NLs. These changes occurred in real time on hourly and daily time scales. Increases in ambient noise could reduce male humpback whale communication space in the important breeding area off Hawaii. Since these vocalization changes may be dependent on location or behavioral state, more work is needed at other locations and with other species.Publisher PDFPeer reviewe

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    New perspectives on the hepatitis B virus life cycle in the human liver

    No full text

    In Vitro Study of the Effects of Precore and Lamivudine-Resistant Mutations on Hepatitis B Virus Replication

    No full text
    Understanding the consequences of mutation in the hepatitis B virus (HBV) genome on HBV replication is critical for treating chronic HBV infection. In this study, HBV replication in HepG2 cells initiated by transduction with precore (PC), rtM204I, and wild-type (wt) HBV recombinant baculoviruses was compared. The pattern and magnitude of HBV replication initiated by the PC HBV recombinant baculovirus were similar to those observed for wt HBV throughout the time course examined. In contrast, when the rtM204I mutation was introduced into wt HBV, by day 10 postinfection the levels of intra- and extracellular HBV DNA were markedly reduced compared to those for wt HBV. Although the rtM204I mutation reduced the production of HBV replicative intermediates, no effect on the level of covalently closed circular DNA or HBV transcripts was observed at late time points. Coinfection studies with different ratios of wt and rtM204I baculoviruses showed that the rtM204I variant did not produce a product that inhibited HBV replication. However, the combination of the wt and rtM204I baculoviruses yielded HBV DNA levels at late time points that were greater than those for the wt alone, suggesting that wt polymerase may function in trans to boost rtM204I replication. We concluded that the rtM204I mutation generates a polymerase that is not only resistant to lamivudine but also replicates nucleic acids to lower levels in vitro
    corecore