44 research outputs found

    What Is the Reservoir of Emergent Human Norovirus Strains?

    Get PDF
    Since 1996, there have been at least six human norovirus pandemics. All of the pandemic strains are genetically related, segregating in the genogroup II, genotype 4 (GII.4) cluster within the Norovirus genus. Evidence indicates that these strains are closely related but antigenically distinct, supporting immune-driven viral evolution. Thus, norovirus vaccines will likely require periodic reformulation to protect from newly emergent strains. A major obstacle is that the reservoir of emergent strains is unknown. Noroviruses display tight species specificity and there is no evidence supporting zoonotic transmission, so an animal reservoir is considered unlikely. Moreover, available data indicate minimal viral diversity in most natural human infections. In this Gem, we discuss the widely speculated idea that chronically infected immunocompromised individuals are norovirus reservoirs and provide a rationale for the theory that elderly and malnourished hosts may also represent norovirus reservoirs

    Brief Report: Assessment of Intervention Effects on In Vivo Peer Interactions in Adolescents with Autism Spectrum Disorder (ASD)

    Get PDF
    This study aimed to evaluate the effectiveness of a randomized controlled trial of a social skills intervention, the Program for the Education and Enrichment of Relational Skills (PEERS: Laugeson et al. in J Autism Dev Disord 39(4): 596–606, 2009), by coding digitally recorded social interactions between adolescent participants with ASD and a typically developing adolescent confederate. Adolescent participants engaged in a 10-min peer interaction at pre- and post-treatment. Interactions were coded using the Contextual Assessment of Social Skills (Ratto et al. in J Autism Dev Disord 41(9): 1277–1286, 2010). Participants who completed PEERS demonstrated significantly improved vocal expressiveness, as well as a trend toward improved overall quality of rapport, whereas participants in the waitlist group exhibited worse performance on these domains. The degree of this change was related to knowledge gained in PEERS

    Infection of neonatal mice with the murine norovirus strain WU23 is a robust model to study norovirus pathogenesis

    Get PDF
    Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. The development of the murine norovirus (MNV) model nearly two decades ago has facilitated progress in understanding host-norovirus interactions and norovirus strain variability. However, MNV strains tested thus far either do not cause intestinal disease or were isolated from extraintestinal tissue, raising concerns about translatability of research findings to human norovirus disease. Consequently, the field lacks a strong model of norovirus gastroenteritis. Here we provide a comprehensive characterization of a new small animal model system for the norovirus field that overcomes prior weaknesses. Specifically, we demonstrate that the WU23 MNV strain isolated from a mouse naturally presenting with diarrhea causes a transient reduction in weight gain and acute self-resolving diarrhea in neonatal mice of several inbred mouse lines. Moreover, our findings reveal that norovirus-induced diarrhea is associated with infection of subepithelial cells in the small intestine and systemic spread. Finally, type I interferons (IFNs) are critical to protect hosts from norovirus-induced intestinal disease whereas type III IFNs exacerbate diarrhea. This latter finding is consistent with other emerging data implicating type III IFNs in the exacerbation of some viral diseases. This new model system should enable a detailed investigation of norovirus disease mechanisms

    Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages

    Get PDF
    Noroviruses are understudied because these important enteric pathogens have not been cultured to date. We found that the norovirus murine norovirus 1 (MNV-1) infects macrophage-like cells in vivo and replicates in cultured primary dendritic cells and macrophages. MNV-1 growth was inhibited by the interferon-αÎČ receptor and STAT-1, and was associated with extensive rearrangements of intracellular membranes. An amino acid substitution in the capsid protein of serially passaged MNV-1 was associated with virulence attenuation in vivo. This is the first report of replication of a norovirus in cell culture. The capacity of MNV-1 to replicate in a STAT-1-regulated fashion and the unexpected tropism of a norovirus for cells of the hematopoietic lineage provide important insights into norovirus biology

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    Epithelial Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer generally presents at an advanced stage and is the most common cause of gynaecological cancer death. Treatment requires expert multidisciplinary care. Population-based screening has been ineffective, but new approaches for early diagnosis and prevention that leverage molecular genomics are in development. Initial therapy includes surgery and adjuvant therapy. Epithelial ovarian cancer is composed of distinct histological subtypes with unique genomic characteristics, which are improving the precision and effectiveness of therapy, allowing discovery of predictors of response such as mutations in breast cancer susceptibility genes BRCA1 and BRCA2, and homologous recombination deficiency for DNA damage response pathway inhibitors or resistance (cyclin E1). Rapidly evolving techniques to measure genomic changes in tumour and blood allow for assessment of sensitivity and emergence of resistance to therapy, and might be accurate indicators of residual disease. Recurrence is usually incurable, and patient symptom control and quality of life are key considerations at this stage. Treatments for recurrence have to be designed from a patient's perspective and incorporate meaningful measures of benefit. Urgent progress is needed to develop evidence and consensus-based treatment guidelines for each subgroup, and requires close international cooperation in conducting clinical trials through academic research groups such as the Gynecologic Cancer Intergroup.status: publishe

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Diverse Mechanisms Underlie Enhancement of Enteric Viruses by the Mammalian Intestinal Microbiota

    No full text
    Over the past two decades, there has been tremendous progress in understanding the impact of the intestinal microbiota on mammalian metabolism, physiology, and immune development and function. There has also been substantial advancement in elucidating the interplay between commensal and pathogenic bacteria. Relatively more recently, researchers have begun to investigate the effect of the intestinal microbiota on viral pathogenesis. Indeed, a growing body of literature has reported that commensal bacteria within the mammalian intestinal tract enhance enteric virus infections through a variety of mechanisms. Commensal bacteria or bacterial glycans can increase the stability of enteric viruses, enhance virus binding to host receptors, modulate host immune responses in a proviral manner, expand the numbers of host cell targets, and facilitate viral recombination. In this review, we will summarize the current literature exploring these effects of the intestinal microbiota on enteric virus infections
    corecore