9 research outputs found

    A Cluster-Randomized Controlled Trial to Reduce Diarrheal Disease and Dengue Entomological Risk Factors in Rural Primary Schools in Colombia

    Get PDF
    As many neglected tropical diseases are co-endemic and have common risk factors, integrated control can efficiently reduce disease burden and relieve resource-strained public health budgets. Diarrheal diseases and dengue fever are major global health problems sharing common risk factors in water storage containers. Where provision of clean water is inadequate, water storage is crucial. Fecal contamination of stored water is a common source of diarrheal illness, but stored water also provides breeding sites for dengue vector mosquitoes. Integrating improved water management and educational strategies for both diseases in the school environment can potentially improve the health situation for students and the larger community. The objective of this trial was to investigate whether interventions targeting diarrhea and dengue risk factors would significantly reduce absence due to diarrheal disease and dengue entomological risk factors in schools. A factorial cluster randomized controlled trial was carried out in 34 rural primary schools (1,301 pupils) in La Mesa and Anapoima municipalities, Cundinamarca, Colombia. Schools were randomized to one of four study arms: diarrhea interventions (DIA), dengue interventions (DEN), combined diarrhea and dengue interventions (DIADEN), and control (CON). Interventions had no apparent effect on pupil school absence due to diarrheal disease (p = 0.45) or on adult female Aedes aegypti density (p = 0.32) (primary outcomes). However, the dengue interventions reduced the Breteau Index on average by 78% (p = 0.029), with Breteau indices of 10.8 and 6.2 in the DEN and DIADEN arms, respectively compared to 37.5 and 46.9 in the DIA and CON arms, respectively. The diarrhea interventions improved water quality as assessed by the amount of Escherichia coli colony forming units (CFU); the ratio of Williams mean E. coli CFU being 0.22, or 78% reduction (p = 0.008). Integrated control of dengue and diarrhea has never been conducted before. This trial presents an example for application of control strategies that may affect both diseases and the first study to apply such an approach in school settings. The interventions were well received and highly appreciated by students and teachers. An apparent absence of effect in primary outcome indicators could be the result of pupils being exposed to risk factors outside the school area and mosquitoes flying in from nearby uncontrolled breeding sites. Integrated interventions targeting these diseases in a school context remain promising because of the reduced mosquito breeding and improved water quality, as well as educational benefits. However, to improve outcomes in future integrated approaches, simultaneous interventions in communities, in addition to schools, should be considered; using appropriate combinations of site-specific, effective, acceptable, and affordable interventions

    Life-History Responses to the Altitudinal Gradient

    No full text
    We review life-history variation along elevation in animals and plants and illustrate its drivers, mechanisms and constraints. Elevation shapes life histories into suites of correlated traits that are often remarkably convergent among organisms facing the same environmental challenges. Much of the variation observed along elevation is the result of direct physiological sensitivity to temperature and nutrient supply. As a general rule, alpine populations adopt ‘slow’ life cycles, involving long lifespan, delayed maturity, slow reproductive rates and strong inversions in parental care to enhance the chance of recruitment. Exceptions in both animals and plants are often rooted in evolutionary legacies (e.g. constraints to prolonging cycles in obligatory univoltine taxa) or biogeographic history (e.g. location near trailing or leading edges). Predicting evolutionary trajectories into the future must take into account genetic variability, gene flow and selection strength, which define the potential for local adaptation, as well as the rate of anthropogenic environmental change and species’ idiosyncratic reaction norms. Shifts up and down elevation in the past helped maintain genetic differentiation in alpine populations, with slow life cycles contributing to the accumulation of genetic diversity during upward migrations. Gene flow is facilitated by the proximity of neighbouring populations, and global warming is likely to move fast genotypes upwards and reduce some of those constraints dominating alpine life. Demographic buffering or compensation may protect local alpine populations against trends in environmental conditions, but such mechanisms may not last indefinitely if evolutionary trajectories cannot keep pace with rapid changes.Peer reviewe

    Urogenital tuberculosis

    No full text
    corecore