93 research outputs found

    ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ наполнитСля Π² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ΠΎΠ²ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ

    Get PDF
    ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования являСтся процСсс проникновСния биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ наполнитСля CaP Π² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ΠΎΠ²ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ костной Ρ‚ΠΊΠ°Π½ΠΈ. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ процСсса распространСния биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ наполнитСля Π² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ (костной Ρ‚ΠΊΠ°Π½ΠΈ), ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ Π² ΡˆΠΈΡ€ΠΎΠΊΠΈΡ… ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ основныС количСствСнныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΊΠ°ΠΊ самой костной Ρ‚ΠΊΠ°Π½ΠΈ, Ρ‚Π°ΠΊ ΠΈ лСкарствСнного вСщСства, ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎ Π² эту Ρ‚ΠΊΠ°Π½ΡŒ. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ модСль ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ процСсса построСна Π½Π° основС уравнСния Π‘ΠΎΠ»ΡŒΡ†ΠΌΠ°Π½, ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Π² силу малости скорости Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ частиц Π² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ функция распрСдСлСния являСтся локально-равновСсной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ. ВозмущСния вносимыС взаимодСйствиСм с Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ приводят ΠΊ Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» столкновСний выраТаСтся Ρ‡Π΅Ρ€Π΅Π· транспортноС сСчСниС.The object of research is the process of penetration of the active filler CaP in the collagen matrix of bone tissue. Purpose - to develop a mathematical model of the process of distribution bioactive filler in the collagen matrix (bone), allowing a wide range to change the basic quantitative parameters of both the bone and the drug penetrates into the fabric. A mathematical model of the investigated process is based on the Boltzmann equation, provided that due to the smallness of the diffusion speed of particles in a collagen matrix distribution function is a locally-equilibrium function. Disturbances introduced by reacting with nanotubes lead to the fact that the collision integral expressed by the transport section

    3D-printed facet-attached microlenses for advanced photonic system assembly

    Get PDF
    Wafer-level mass production of photonic integrated circuits (PIC) has become a technological mainstay in the field of optics and photonics, enabling many novel and disrupting a wide range of existing applications. However, scalable photonic packaging and system assembly still represents a major challenge that often hinders commercial adoption of PIC-based solutions. Specifically, chip-to-chip and fiber-to-chip connections often rely on so-called active alignment techniques, where the coupling efficiency is continuously measured and optimized during the assembly process. This unavoidably leads to technically complex assembly processes and high cost, thereby eliminating most of the inherent scalability advantages of PIC-based solutions. In this paper, we demonstrate that 3D-printed facet-attached microlenses (FaML) can overcome this problem by opening an attractive path towards highly scalable photonic system assembly, relying entirely on passive assembly techniques based on industry-standard machine vision and/or simple mechanical stops. FaML can be printed with high precision to the facets of optical components using multi-photon lithography, thereby offering the possibility to shape the emitted beams by freely designed refractive or reflective surfaces. Specifically, the emitted beams can be collimated to a comparatively large diameter that is independent of the device-specific mode fields, thereby relaxing both axial and lateral alignment tolerances. Moreover, the FaML concept allows to insert discrete optical elements such as optical isolators into the free-space beam paths between PIC facets. We show the viability and the versatility of the scheme in a series of selected experiments of high technical relevance, comprising pluggable fiber-chip interfaces, the combination of PIC with discrete micro-optical elements such as polarization beam splitters, as well as coupling with ultra-low back-reflection based on non-planar beam paths that only comprise tilted optical surfaces. Based on our results, we believe that the FaML concept opens an attractive path towards novel PIC-based system architectures that combine the distinct advantages of different photonic integration platforms

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications

    Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro

    Get PDF
    The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results

    A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening

    Get PDF
    Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7Β±2.3%–58.7Β±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost

    Fourteen sequence variants that associate with multiple sclerosis discovered by meta-analysis informed by genetic correlations

    Get PDF
    A meta-analysis of publicly available summary statistics on multiple sclerosis combined with three Nordic multiple sclerosis cohorts (21,079 cases, 371,198 controls) revealed seven sequence variants associating with multiple sclerosis, not reported previously. Using polygenic risk scores based on public summary statistics of variants outside the major histocompatibility complex region we quantified genetic overlap between common autoimmune diseases in Icelanders and identified disease clusters characterized by autoantibody presence/absence. As multiple sclerosis-polygenic risk scores captures the risk of primary biliary cirrhosis and vice versa (P = 1.6 x 10(-7), 4.3 x 10(-9)) we used primary biliary cirrhosis as a proxy-phenotype for multiple sclerosis, the idea being that variants conferring risk of primary biliary cirrhosis have a prior probability of conferring risk of multiple sclerosis. We tested 255 variants forming the primary biliary cirrhosis-polygenic risk score and found seven multiple sclerosis-associating variants not correlated with any previously established multiple sclerosis variants. Most of the variants discovered are close to or within immune-related genes. One is a low-frequency missense variant in TYK2, another is a missense variant in MTHFR that reduces the function of the encoded enzyme affecting methionine metabolism, reported to be dysregulated in multiple sclerosis brain.publishedVersio

    More than 75 percent decline over 27 years in total flying insect biomass in protected areas

    Get PDF
    Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape

    Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases

    Get PDF
    Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • …
    corecore