6 research outputs found

    Radius Dependent Angular Momentum Evolution in Low-Mass Stars. I

    Full text link
    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behaviour of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux, and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from the large change in radius across this boundary, and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars, and field saturation at longer periods in very low-mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.Comment: accepted by Ap

    The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    Get PDF
    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include 6 of the candidate young systems. 45 of the binary systems are close (mainly contact) systems; one shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 \pm 0.0000071d, with flat-bottomed primary eclipses, and a derived distance consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).Comment: 66 pages, 27 figures, accepted to Astronomical Journal. Minor typographical corrections and update to author affiliation

    DRAFTS: A Deep, Rapid Archival Flare Transient Search in the Galactic Bulge

    Full text link
    We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS) HST/ACS dataset for a Deep Rapid Archival Flare Transient Search (DRAFTS) to constrain the flare rate toward the older stellar population in the Galactic bulge. During 7 days of monitoring 229,293 stars brighter than V=29.5, we find evidence for flaring activity in 105 stars between V=20 and V=28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is \sim 700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, they span a range of \approx 1.0 - 0.25M\odot. A majority of the flaring stars exhibit periodic photometric modulations with P <3d. If these are tidally locked magnetically active binary systems, their fraction in the bulge is enhanced by a factor of \sim20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.Comment: accepted for publication in the Astrophysical Journa

    Mercury and Cadmium Organometallics

    No full text
    corecore