143 research outputs found

    Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB11H12 via Confinement within Nanoporous Silica

    Get PDF
    Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room temperature. To unlock their technological potential, strategies are needed to stabilize these superionic properties down to subambient temperatures. One such strategy involves altering the bulk properties by confinement within nanoporous insulators. In the current study, the unique structural and ion dynamical properties of an exemplary salt, NaCB11H12, nanodispersed within porous, high-surface-area silica via salt-solution infiltration were studied by differential scanning calorimetry, X-ray powder diffraction, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and impedance spectroscopy. Combined results hint at the formation of a nanoconfined phase that is reminiscent of the high-temperature superionic phase of bulk NaCB11H12, with dynamically disordered CB11H12-anions exhibiting liquid-like reorientational mobilities. However, in contrast to this high-temperature bulk phase, the nanoconfined NaCB11H12 phase with rotationally fluid anions persists down to cryogenic temperatures. Moreover, the high anion mobilities promoted fast-cation diffusion, yielding Na+ superionic conductivities of similar to 0.3 mS/cm at room temperature, with higher values likely attainable via future optimization. It is expected that this successful strategy for conductivity enhancement could be applied as well to other related polyhedral (carba)borate-based salts. Thus, these results present a new route to effectively utilize these types of superionic salts as solid-state electrolytes in future battery applications

    Design of low-cost ionic liquids for lignocellulosic biomass pretreatment

    Get PDF
    The cost of ionic liquids (ILs) is one of the main impediments to IL utilization in the cellulosic biorefinery, especially in the pretreatment step. In this study, a number of ionic liquids were synthesized with the goal of optimizing solvent cost and stability whilst demonstrating promising processing potential. To achieve this, inexpensive feedstocks such as sulfuric acid and simple amines were combined into a range of protic ionic liquids containing the hydrogen sulfate [HSO] anion. The performance of these ionic liquids was compared to a benchmark system containing the IL 1-ethyl-3-methylimidazolium acetate [CCim][OAc]. The highest saccharification yields were observed for the triethylammonium hydrogen sulfate IL, which was 75% as effective as the benchmark system. Techno-economic modeling revealed that this promising and yet to be optimized yield was achieved at a fraction of the processing cost. This study demonstrates that some ILs can compete with the cheapest pretreatment chemicals, such as ammonia, in terms of effectiveness and process cost, removing IL cost as a barrier to the economic viability of IL-based biorefineries

    Halochromic coordination polymers based on a triarylmethane dye for reversible detection of acids

    Get PDF
    Chromeazurol B (Na2HL) is a pH-sensitive (halochromic) dye based on a hydroxytriarylmethane core and two carboxylate functional groups, which makes it suitable for the synthesis of coordination polymers. Two new coordination polymers [NaZn4(H2O)3(L)3]·3THF·3H2O (1) and [Zn3(H2O)3(μ2- OH2)(μ3-OH)(HL)2(H2L)]·2THF·3H2O (2) incorporating Chromeazurol B linkers have been prepared and characterised. The structure of 1 comprises pentanuclear heterometallic {Zn4Na} nodes linked by six L3– anions to give a layered structure with a honeycomb topology. 2 crystallizes as a double-chain ribbon (ladder) structure with two types of metal node: a mononuclear Zn(II) cation and tetranuclear {Zn(II)}4 cluster. Chromeazurol B anions link each tetranuclear cluster to four individual Zn(II) cations and each Zn(II) cation with four tetranuclear clusters. Both compounds show pH-sensitivity in water solution which can be observed visually, giving the first example of a halochromic coordination polymer. The halochromic properties of 1 towards HCl vapors were systematically investigated. As-synthesized violet-grey 1 reversibly changes color from orange to pink in the presence of vapors of 2M and 7M HCl, respectively. The coordination of the Chromeazurol B anion at each color stage was examined by diffuse reflectance spectroscopy and FT-IR measurements. The remarkable stability of 1 to acid and the observed reversible and reproducible color changes provide a new design for multifunctional sensor materials

    Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides

    Get PDF
    The attention towards the utilization of sustainable feedstocks for polymer synthesis has grown exponentially in recent years. One of the spotlighted monomers derived from renewable resources is 2,5-furandicarboxylic acid (FDCA), one of the most promising bio-based monomers, due to its resemblance to petroleum-based terephthalic acid. Very interesting synthetic routes using this monomer have been reported in the last two decades. Combining the use of bio-based monomers and non-toxic chemicals via enzymatic polymerizations can lead to a robust and favorable approach towards a greener technology of bio-based polymer production. In this chapter, a brief introduction to FDCA-based monomers and enzymatic polymerizations is given, particularly focusing on furan-based polymers and their polymerization. In addition, an outline of the recent developments in the field of enzymatic polymerizations is discussed. </p

    Treatment of Peritoneal Carcinomatosis by Targeted Delivery of the Radio-Labeled Tumor Homing Peptide 213Bi-DTPA-[F3]2 into the Nucleus of Tumor Cells

    Get PDF
    BACKGROUND: Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for alpha-particle emitting isotopes facilitating selective tumor therapies. PRINCIPAL FINDINGS: A dimer of the vascular tumor homing peptide F3 was chemically coupled to the alpha-emitter (213)Bi ((213)Bi-DTPA-[F3](2)). We found (213)Bi-DTPA-[F3](2) to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of (213)Bi-DTPA-[F3](2) we treated mice bearing intraperitoneally growing xenograft tumors with (213)Bi-DTPA-[F3](2). In a tumor prevention study between the days 4-14 after inoculation of tumor cells 6x1.85 MBq (50 microCi) of (213)Bi-DTPA-[F3](2) were injected. In a tumor reduction study between the days 16-26 after inoculation of tumor cells 6x1.85 MBq of (213)Bi-DTPA-[F3](2) were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found (213)Bi-DTPA-[F3](2) to accumulate in tumors but only low activities were found in control organs except for the kidneys, where (213)Bi-DTPA-[F3](2) is found due to renal excretion. CONCLUSIONS/SIGNIFICANCE: In conclusion we report that (213)Bi-DTPA-[F3](2) is a novel tool for the targeted delivery of alpha-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology

    Luminescent Tris(8-hydroxyquinolates) of Bismuth(III)

    Full text link
    Luminescent homoleptic bismuth(III) complexes have been synthesized by adding several functionalized 8-hydroxyquinolate ligands to bismuth(III) chloride in a 3:1 mole ratio in either ethanol or tetrahydrofuran (THF) solvent. These complexes have been characterized by single-crystal X-ray diffraction (XRD) analysis, UV-vis spectroscopy, fluorescence spectroscopy, and density functional theory (DFT) calculations to determine their structures and photophysical properties. Reversible dimerization of the mononuclear tris(hydroxyquinolate) complexes was observed in solution and quantified using UV-vis spectroscopy. The fluorescence spectra show a blue shift for the monomer compared with homoleptic aluminum(III) hydroxyquinolate compounds. Four dimeric compounds and one monomeric isomer were characterized structurally. The bismuth(III) centers in the dimers are bridged by two oxygen atoms from the substituted hydroxyquinolate ligands. The more sterically hindered quinolate complex, tris(2-(diethoxymethyl)-8-quinolinato)bismuth, crystallizes as a monomer. The complexes all exhibit low-lying absorption and emission spectral features attributable to transitions between the HOMO (π orbital localized on the quinolate phenoxide ring) and LUMO (π* orbital localized on the quinolate pyridyl ring). Excitation and emission spectra show a concentration dependence in solution that suggests that a monomer-dimer equilibrium occurs. Electronic structure DFT calculations support trends seen in the experimental results with a HOMO-LUMO gap of 2.156 eV calculated for the monomer that is significantly larger than those for the dimers (1.772 and 1.915 eV). The close face to face approach of two quinolate rings in the dimer destabilizes the uppermost occupied quinolate π orbitals, which reduces the HOMO-LUMO gap and results in longer wavelength absorption and emission spectral features than in the monomer form

    Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal-Organic Frameworks

    Get PDF
    Isostructural metal–organic frameworks (MOFs) M[subscript 2](TTFTB) (M = Mn, Co, Zn, and Cd; H[subscript 4]TTFTB = tetrathiafulvalene tetrabenzoate) exhibit a striking correlation between their single-crystal conductivities and the shortest S···S interaction defined by neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions. The larger cations cause a pinching of the S···S contact, which is responsible for better orbital overlap between pz orbitals on neighboring S and C atoms. Density functional theory calculations show that these orbitals are critically involved in the valence band of these materials, such that modulation of the S···S distance has an important effect on band dispersion and, implicitly, on the conductivity. The Cd analogue, with the largest cation and shortest S···S contact, shows the largest electrical conductivity, σ = 2.86 (±0.53) × 10[subscript –4] S/cm, which is also among the highest in microporous MOFs. These results describe the first demonstration of tunable intrinsic electrical conductivity in this class of materials and serve as a blueprint for controlling charge transport in MOFs with π-stacked motifs.United States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0006937)National Science Foundation (U.S.). Graduate Research Fellowship Program (Award 1122374)David & Lucile Packard Foundation (Fellowship

    How reproducible are surface areas calculated from the BET equation?

    Get PDF
    Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible

    Design of low-cost ionic liquids for lignocellulosic biomass pretreatment

    Get PDF
    The cost of ionic liquids (ILs) is one of the main impediments to IL utilization in the cellulosic biorefinery, especially in the pretreatment step. In this study, a number of ionic liquids were synthesized with the goal of optimizing solvent cost and stability whilst demonstrating promising processing potential. To achieve this, inexpensive feedstocks such as sulfuric acid and simple amines were combined into a range of protic ionic liquids containing the hydrogen sulfate [HSO4]− anion. The performance of these ionic liquids was compared to a benchmark system containing the IL 1-ethyl-3-methylimidazolium acetate [C2C1im][OAc]. The highest saccharification yields were observed for the triethylammonium hydrogen sulfate IL, which was 75% as effective as the benchmark system. Techno-economic modeling revealed that this promising and yet to be optimized yield was achieved at a fraction of the processing cost. This study demonstrates that some ILs can compete with the cheapest pretreatment chemicals, such as ammonia, in terms of effectiveness and process cost, removing IL cost as a barrier to the economic viability of IL-based biorefineries
    • …
    corecore