144 research outputs found

    Reliable protocol for sample preparation to observe nanomaterial adherence to the surface of biological cells by using scanning electron microscopy

    Get PDF
    Background. When assessing the interaction between nanomaterials and cells, an important step is to image the effects induced by the material to the cell membrane. In order to evaluate the results of the interaction process, scanning electron microscopy (SEM) is typically used. Commonly, an important step during the preparation of biological cell samples for SEM is represented by the critical point drying, which involves the replacement of the alcohol used for dehydration with an inert gas. This conventional drying method is not only hard to accomplish, but it can lead to sample destruction if specific parameters are not met. On the other hand, when assessing nanomaterials adhered to the cell membrane, the integrity of the cell is not necessarily important, so a little cell deflation doesn’t affect the intended purpose of the evaluation. Here, we describe a simple and more cost efficient method to prepare biological samples for SEM imaging that preserves cell integrity and can be used to describe nanomaterials interaction with cell surface. Methods. Cells were grown on sterilized silica chips, after which the evaluated nanomaterial was added to the cell culture media at least 24h for incubation. Afterwards, the samples were washed to eliminate non-adhered nanomaterials, fixed with glutaraldehyde and osmium tetroxide, and dehydrated with increasing concentrations of alcohol. The silica chips were then air dried in the biological safety hood and in vacuum, followed by a sputter coat film of 5 nm of gold. The samples were imaged with a scanning electron microscope. Results. We were able to obtain well preserved biological cell samples, both with and without nanomaterials adhered to the cell membrane surface. Nanomaterials such as magnetic nanoparticles and magnetic nanowires were easily traceable on cell surface. Furthermore, the nanomaterials were clearly observed in the images obtained, while the cell surface was not affected by the drying process applied. Although the samples obtained using our method were characterized by a slight deflation of the cells, the morphology of the cells is well preserved and the method is suitable for the evaluation of the interaction between nanomaterials and cell surfaces. Conclusions: We have described a novel cost efficient and easy to perform method for processing biological samples for SEM imaging that preserves cell morphology and can be used for analyzing nanoparticle and nanowires interaction with cell surface

    Electrolyte-Assisted Hydrogen Storage Reactions

    Get PDF
    Use of electrolytes, in the form of LiBH_4/KBH_4 and LiI/KI/CsI eutectics, is shown to significantly improve (by more than a factor of 10) both the dehydrogenation and full rehydrogenation of the MgH_2/Sn destabilized hydride system and the hydrogenation of MgB_2 to Mg(BH_4)_2. The improvement revealed that interparticle transport of atoms heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in hydrogen storage materials consisting of multiple phases in powder form. Electrolytes enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction over full surface areas of interacting particles. The examples presented suggest that use of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts may be generally applicable for increasing reaction rates in complex and destabilized hydride materials

    Electrolyte-Assisted Hydrogen Storage Reactions

    Get PDF
    Use of electrolytes, in the form of LiBH_4/KBH_4 and LiI/KI/CsI eutectics, is shown to significantly improve (by more than a factor of 10) both the dehydrogenation and full rehydrogenation of the MgH_2/Sn destabilized hydride system and the hydrogenation of MgB_2 to Mg(BH_4)_2. The improvement revealed that interparticle transport of atoms heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in hydrogen storage materials consisting of multiple phases in powder form. Electrolytes enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction over full surface areas of interacting particles. The examples presented suggest that use of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts may be generally applicable for increasing reaction rates in complex and destabilized hydride materials

    Treatment of Peritoneal Carcinomatosis by Targeted Delivery of the Radio-Labeled Tumor Homing Peptide 213Bi-DTPA-[F3]2 into the Nucleus of Tumor Cells

    Get PDF
    BACKGROUND: Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for alpha-particle emitting isotopes facilitating selective tumor therapies. PRINCIPAL FINDINGS: A dimer of the vascular tumor homing peptide F3 was chemically coupled to the alpha-emitter (213)Bi ((213)Bi-DTPA-[F3](2)). We found (213)Bi-DTPA-[F3](2) to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of (213)Bi-DTPA-[F3](2) we treated mice bearing intraperitoneally growing xenograft tumors with (213)Bi-DTPA-[F3](2). In a tumor prevention study between the days 4-14 after inoculation of tumor cells 6x1.85 MBq (50 microCi) of (213)Bi-DTPA-[F3](2) were injected. In a tumor reduction study between the days 16-26 after inoculation of tumor cells 6x1.85 MBq of (213)Bi-DTPA-[F3](2) were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found (213)Bi-DTPA-[F3](2) to accumulate in tumors but only low activities were found in control organs except for the kidneys, where (213)Bi-DTPA-[F3](2) is found due to renal excretion. CONCLUSIONS/SIGNIFICANCE: In conclusion we report that (213)Bi-DTPA-[F3](2) is a novel tool for the targeted delivery of alpha-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology

    Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides

    Get PDF
    The attention towards the utilization of sustainable feedstocks for polymer synthesis has grown exponentially in recent years. One of the spotlighted monomers derived from renewable resources is 2,5-furandicarboxylic acid (FDCA), one of the most promising bio-based monomers, due to its resemblance to petroleum-based terephthalic acid. Very interesting synthetic routes using this monomer have been reported in the last two decades. Combining the use of bio-based monomers and non-toxic chemicals via enzymatic polymerizations can lead to a robust and favorable approach towards a greener technology of bio-based polymer production. In this chapter, a brief introduction to FDCA-based monomers and enzymatic polymerizations is given, particularly focusing on furan-based polymers and their polymerization. In addition, an outline of the recent developments in the field of enzymatic polymerizations is discussed. </p

    Luminescent Tris(8-hydroxyquinolates) of Bismuth(III)

    Full text link
    Luminescent homoleptic bismuth(III) complexes have been synthesized by adding several functionalized 8-hydroxyquinolate ligands to bismuth(III) chloride in a 3:1 mole ratio in either ethanol or tetrahydrofuran (THF) solvent. These complexes have been characterized by single-crystal X-ray diffraction (XRD) analysis, UV-vis spectroscopy, fluorescence spectroscopy, and density functional theory (DFT) calculations to determine their structures and photophysical properties. Reversible dimerization of the mononuclear tris(hydroxyquinolate) complexes was observed in solution and quantified using UV-vis spectroscopy. The fluorescence spectra show a blue shift for the monomer compared with homoleptic aluminum(III) hydroxyquinolate compounds. Four dimeric compounds and one monomeric isomer were characterized structurally. The bismuth(III) centers in the dimers are bridged by two oxygen atoms from the substituted hydroxyquinolate ligands. The more sterically hindered quinolate complex, tris(2-(diethoxymethyl)-8-quinolinato)bismuth, crystallizes as a monomer. The complexes all exhibit low-lying absorption and emission spectral features attributable to transitions between the HOMO (π orbital localized on the quinolate phenoxide ring) and LUMO (π* orbital localized on the quinolate pyridyl ring). Excitation and emission spectra show a concentration dependence in solution that suggests that a monomer-dimer equilibrium occurs. Electronic structure DFT calculations support trends seen in the experimental results with a HOMO-LUMO gap of 2.156 eV calculated for the monomer that is significantly larger than those for the dimers (1.772 and 1.915 eV). The close face to face approach of two quinolate rings in the dimer destabilizes the uppermost occupied quinolate π orbitals, which reduces the HOMO-LUMO gap and results in longer wavelength absorption and emission spectral features than in the monomer form

    Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal-Organic Frameworks

    Get PDF
    Isostructural metal–organic frameworks (MOFs) M[subscript 2](TTFTB) (M = Mn, Co, Zn, and Cd; H[subscript 4]TTFTB = tetrathiafulvalene tetrabenzoate) exhibit a striking correlation between their single-crystal conductivities and the shortest S···S interaction defined by neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions. The larger cations cause a pinching of the S···S contact, which is responsible for better orbital overlap between pz orbitals on neighboring S and C atoms. Density functional theory calculations show that these orbitals are critically involved in the valence band of these materials, such that modulation of the S···S distance has an important effect on band dispersion and, implicitly, on the conductivity. The Cd analogue, with the largest cation and shortest S···S contact, shows the largest electrical conductivity, σ = 2.86 (±0.53) × 10[subscript –4] S/cm, which is also among the highest in microporous MOFs. These results describe the first demonstration of tunable intrinsic electrical conductivity in this class of materials and serve as a blueprint for controlling charge transport in MOFs with π-stacked motifs.United States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0006937)National Science Foundation (U.S.). Graduate Research Fellowship Program (Award 1122374)David & Lucile Packard Foundation (Fellowship

    How reproducible are surface areas calculated from the BET equation?

    Get PDF
    Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible
    • …
    corecore