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Abstract 

Use of electrolytes, in the form of LiBH4/KBH4 and LiI/KI/CsI eutectics, is shown to 

significantly improve (by more than a factor of ten) both the dehydrogenation and full 

rehydrogenation of the MgH2/Sn destabilized hydride system and the hydrogenation of 

MgB2 to Mg(BH4)2.  The improvement revealed that inter-particle transport of atoms 

heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in 

hydrogen storage materials consisting of multiple phases in powder form.  Electrolytes 

enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction 

over full surface areas of interacting particles.  The examples presented suggest that use 

of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts 
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3

may be generally applicable for increasing reaction rates in complex and destabilized 

hydride materials.

Introduction

Hydrogen cycling in high capacity hydrogen storage materials often involves multiple solid 

phases in powder-particle form that must interact, nucleate, grow, and shrink during 

reaction.  These materials, including many complex hydrides1-3 and destabilized hydride 
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4

mixtures4 (also called reactive hydride composites5), have rates of hydrogen uptake and 

release that are typically very slow.  To address this issue, catalytic additives6 and 

nanoscale formulations7-9 have been studied extensively. These approaches have 

produced considerable improvements, although the rates of hydrogen cycling are still 

typically too limited for practical applications, such as vehicular hydrogen storage.  One 

reason for this limitation may be that both catalytic additives and nanoscale formulations 

predominately address atomic transport and reaction within individual particles.  However, 

in multiple solid-phase materials, atomic transport between particles of different phases 

is required.  This requirement could impose additional kinetic restrictions because inter-

particle transport 1) likely involves the motion of atoms heavier than hydrogen, such as 

Li, Na, Mg, B, and Al; 2) may occur over relatively long distances (much longer than typical 

bond lengths); and 3) can only occur at interfaces where different phase particles come 

in contact on an atomic scale.  For typical powders, this interfacial area may be only a 

small fraction of the total surface area. 
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5

Here we explore the idea that the kinetics of hydrogen cycling in multiple-phase 

hydrogen storage materials may be improved through the addition of a liquid electrolyte.  

The electrolyte may assist inter-particle transport and promote the overall reaction 

(addressing the restrictions listed above) by 1) solubilizing reacting ions; 2) providing 

liquid-state diffusion rates facilitating long distance transport; and 3) giving transported 

ions access to the full surface area of the reacting phases by surface wetting, effectively 

greatly increasing the number of favorable interactions of the reacting species.  We show 

that using electrolytes can significantly increase the rates of dehydrogenation and 

hydrogenation, by factors of ~10× or more.  This increase clearly identifies the role of 

inter-particle transport in governing the overall rates and mechanisms of hydrogen 

exchange and may provide a useful step towards the eventual commercial application of 

these materials by enabling cycling under more moderate conditions closer to chemical 

equilibrium.

Although to our knowledge, this idea has not been explored explicitly, this work builds 

upon prior studies that have considered systems in which hydrides were dissolved in 
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6

solvents10-14, solvate-type hydride adducts were formed15-20, and molten phases were 

reported to participate in reaction21-23.

Results 

To illustrate the influence of an electrolyte on hydrogen cycling in multiple phase hydrogen 

storage materials we describe results for two systems: MgH2/Sn and Mg(BH4)2.  The 

MgH2/Sn system is a prototypical destabilized hydride in which Sn lowers the enthalpy for 

dehydrogenation through the formation of Mg2Sn.  During dehydrogenation, MgH2 and 

Sn, typically milled together as powders, interact to release hydrogen and form Mg2Sn.  

Upon rehydrogenation, hydrogen interacts with Mg2Sn to reform separate phases of 

MgH2 and Sn. This reaction24-26, and to a greater extent its analog, MgH2/Si24-29, have 

been studied and found to dehydrogenate with the formation of Mg2Sn (and Mg2Si), 

although only at temperatures well above predicted equilibrium temperatures.   

Rehydrogenation has not been observed to any significant extent in previous studies.  

Mg(BH4)2 is a complex hydride that is potentially practical due to its high theoretical 

hydrogen content of 14.9 wt% H2 and favorable equilibrium pressure of 1 bar at ~100 
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7

°C.30,31  Although initially single phase, its dehydrogenation pathway is complex, with the 

formation of multiple intermediate phases such as MgB12H12 and MgH2.  These phases 

must further interact, ultimately forming MgB2.30  Significant (>70%) hydrogenation of 

MgB2 has been achieved although only under impractical conditions, e.g., ~1000 bar H2 

at ~400 °C.32 Therefore, it is highly desirable to facilitate the rehydrogenation of this 

system at some more achievable set of conditions. 

Electrolyte-assisted hydrogen cycling in MgH2/Sn.  Dehydrogenation of milled mixtures 

of MgH2 + 0.5Sn (theoretical capacity 2.3 wt% H2) with and without an electrolyte 

composed of the eutectic 0.725LiBH4/0.275KBH4 are shown in Figure 1.  The electrolyte 

composition was chosen to minimize the melting point (~110 °C, Figure S1) and to reduce 

the chance of any side reactions.33  Samples were prepared by hand-grinding LiBH4 and 

KBH4, and then adding milled MgH2/Sn with gentle mixing using a spatula.  The mass 

fraction of hydride in the hydride + electrolyte system was ~50% (increasing the hydride 

fraction to practical levels, e.g., >~70%, was not the objective of this work and will be 

considered elsewhere).  The dehydrogenation reactions were conducted under an initial 
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8

H2 pressure of 2 bar to prevent any significant direct dehydrogenation of MgH2 forming 

Mg metal (the equilibrium temperature for MgH2 at 2 bar H2, Teq(2 bar), is ~ 300 °C).  Slow 

dehydrogenation was detected at 150 °C (Figure 1a).  Without electrolyte, the rate was 

0.0008 wt% H2/h.  With LiBH4-KBH4, the rate (with respect to the MgH2 + Sn mass only) 

increased to 0.010 wt% H2/h and with LiBH4-KBH4 additionally including 0.025MgI2, the 

rate was 0.020 wt% H2/h.  These dehydrogenation reaction rates are 12× and 25× higher, 

respectively, than the rate without electrolyte.  At higher temperatures, smaller increases 

of 4.7× to 7.3× at 175 °C and 3.2× at 200 °C were observed.  Figure 1b depicts the rates 

in Arrhenius form.  Although there are too few temperatures for accurate estimates, the 

activation energy does appear to decrease significantly from ~150 kJ/mol-H2 without 

electrolyte to ~100 kJ/mol-H2 with the 0.725LiBH4/0.275KBH4 eutectic.  We note that 

these activation energies are still much higher than the thermodynamic barrier of 39 

kJ/mol-H2, estimated from tabulated thermodynamic data for the pure phases.  In addition 

to increased initial rates with the electrolytes, the dehydrogenation rates remained nearly 

constant until the reaction was almost complete.  In contrast, the rate of reaction without 

electrolyte the rate steadily decreases (i.e., at 200 °C, ~70 h, Figure 1), even though the 
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extent of reaction was low.  In preliminary similar work, nearly constant dehydrogenation 

rates were also seen in the MgH2/Si system (Figure S2).  In addition, preliminary 

measurements for MgH2/Sn using several other potential electrolyte systems either 

appeared to decompose or showed similar or slower rates of dehydrogenation (see SI).

Figure 1.  Dehydrogenation of MgH2/Sn with and without electrolyte.  Panel a) desorbed 

hydrogen (curve a, black) without electrolyte; (curve b, red) with added 

0.725LiBH4/0.275KBH4, 50 wt% MgH2/Sn; (curve c, blue) with added 

0.725LiBH4/0.275KBH4 + 0.025MgI2, 44 wt% MgH2/Sn; (dashed curves) corresponding 
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10

temperatures, right axis.  Panel b) dehydrogenation rates vs. inverse absolute temperate 

(determined from linear fits to the isothermal intervals; the uncertainties are ~5%, see SI).  

Desorbed hydrogen (wt%) and dehydrogenation rates (wt% H2/h) are with respect to the 

MgH2/Sn mass only.  Dehydrogenation was conducted in an initial hydrogen pressure of 

2 bar to suppress direct dehydrogenation of MgH2 as well as any decomposition of the 

electrolyte.

To investigate reversibility, samples dehydrogenated with and without LiBH4-KBH4 

electrolyte were treated in hydrogen at 920 bar to 1000 bar while decreasing the 

temperature from 215 °C to 175 °C, over 75 hours (Figure S3).  Following this treatment, 

a second dehydrogenation was conducted.  The results are shown in Figure 2.  With the 

electrolyte, dehydrogenation of ~1.9 wt% occurred indicating nearly complete 

hydrogenation during the hydrogen treatment.  This capacity is ~15% greater than the 
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11

capacity for the initial dehydrogenation possibly indicating improved reaction as a result 

of cycling.  Without electrolyte, at most only 0.3 wt% uptake occurred.  We consider this 

capacity an upper limit because considerable hydrogen remained after the initial 

dehydrogenation, and this remaining hydrogen could have continued to evolve during the 

2nd dehydrogenation. 

Figure 2.  First and second cycle dehydrogenation of MgH2/Sn with and without LiBH4-

KBH4 eutectic electrolyte.  1st cycle dehydrogenation (a, light red) with electrolyte; (b, 

gray) without electrolyte.  2nd cycle dehydrogenation (c, dark red) with electrolyte; (d, 

black) without electrolyte.  (dashed curves) Corresponding temperatures, right axis.  

Desorbed hydrogen (wt%) is with respect to the MgH2/Sn mass only.  Hydrogenation 

treatment between cycles was conducted at 920 bar to 1000 bar while decreasing the 

temperature from 215 °C to 175 °C, over 75 hr.  Dehydrogenations were performed with 

an initial hydrogen pressure of 2 bar H2.  The dehydrogenation temperature was limited 

to 225 °C to avoid melting the Sn (Tm = 232 °C).
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12

X-ray diffraction analysis confirmed that dehydrogenation indeed occurs, as shown in 

Figures S4 and S5.  Following dehydrogenation, Mg2Sn was clearly seen as a crystalline 

phase both with and without electrolyte.  After subsequent hydrogen treatment with the 

electrolyte, peaks for Mg2Sn disappeared while those for MgH2 and Sn grew, indicating 

significant rehydrogenation.  In contrast, without electrolyte, similar patterns were seen 

before and after hydrogen treatment indicating that no or minimal reaction occurred.

Electrolyte-assisted hydrogenation of MgB2.  Samples of milled MgB2 with and without 

electrolytes were treated in ~1000 bar hydrogen at 320 °C for 50 h (Figure S6).  Two 

electrolytes were evaluated.  The first was the 0.725LiBH4/0.275KBH4 eutectic, the same 

electrolyte used with the MgH2/Sn system described above.  The second was a ternary 

alkali metal iodide with the composition 0.33LiI/0.33KI/0.33CsI, which melts at ~210 °C 

(Figure S7).  To minimize any water content, this electrolyte was mixed and cycled to 300 

°C several times prior to mixing with MgB2.  All three samples were treated in hydrogen 

simultaneously in a pressure vessel with multiple individual sample holders.  Treatment 

at 320 °C was chosen because previous work indicated only minor amounts of hydrogen 
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uptake (<~1 wt%) occurred at this temperature.34  Subsequent dehydrogenations of the 

hydrogen-treated samples are shown in Figure 3.  Dehydrogenation of only ~0.3 wt% was 

observed for the MgB2 without electrolyte, indicating minimal hydrogen uptake, as 

expected.  In contrast, both samples with eutectic electrolytes showed significant 

dehydrogenation of ~6 wt% H2 (with respect to the mass of MgB2).  Thus, the presence 

of liquid electrolyte increased the hydrogen uptake by ~20×, to ~40% of completion.  The 

initial rates at 250 °C to 300 °C for both eutectics were similar as seen by the similar 

slopes at ~9 h and 20 h, respectively.  However, the rate with the 0.33LiI/0.33KI/0.33CsI 

eutectic decreased over time, ultimately requiring 350 °C to desorb ~6 wt% H2, while with 

the 0.725LiBH4/0.275KBH4 eutectic, 6 wt% H2 was desorbed at 300 °C.  Two additional 

samples with the 0.33LiI/0.33KI/0.33CsI eutectic, one with 31 wt% MgB2 and another with 

47 wt% MgB2 (~1/2 the amount of eutectic), were similarly hydrogen treated but 

dehydrogenated using a different apparatus in a different laboratory.  The results, shown 

in Figure S8, confirm those shown in Figure 3 and indicate that the improved hydrogen 

uptake persists for lower electrolyte fractions.  

Page 13 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

Figure 3.  Dehydrogenation of MgB2 following treatment in high pressure hydrogen with 

and without electrolytes.  (a, blue) With 0.33LiI/0.33KI/0.33CsI eutectic, 31 wt% MgB2; (b, 

red) with 0.725LiBH4/0.275KBH4 eutectic, 46 wt% MgB2; (c, black) without electrolyte; 

(dashed curves) corresponding temperatures, right axis. The inflection in the rate of (a) 

at 25 h may be associated with slight foaming which was detected when removing the 

sample. Desorbed hydrogen (wt%) is with respect to the MgB2 mass only.  

Dehydrogenation with 0.725LiBH4/0.275KBH4 eutectic was conducted into an initial 

pressure of 2 bar H2; dehydrogenation with the 0.33LiI/0.33KI/0.33CsI eutectic was 

conducted into an initial vacuum. 
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The dehydrogenation results shown in Figure 3 are supported by 11B NMR spectra 

before and after hydrogen treatment as shown in Figure 4.  For the MgB2 without the 

electrolyte, the 11B NMR spectra before and after hydrogen treatment are nearly identical 

(Figure 4a).  A small peak at -41 ppm indicates [BH4]- species with a fraction of ~3% of 

the integrated 11B signal area.  In contrast, with the 0.33LiI/0.33KI/0.33CsI electrolyte after 

hydrogen treatment (Figure 4b) there is a large signal at -39 ppm with an area of 71%, 

while the area for MgB2 decreases to 21%.  There is also a small signal (4%) at -15 ppm 

corresponding to [B12H12]2- species.  There are small shoulders on the -39 ppm peak that 

may indicate [BH4]- species in different environments, possibly due to the presence of Li+, 

K+, and Cs+ cations in the electrolyte.
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Figure 4.  11B NMR spectra of MgB2 with and without 0.33LiI/0.33KI/0.33CsI electrolyte 

before and after hydrogen treatment. (a) Without electrolyte, (blue) before hydrogen 

treatment, (red) after hydrogen treatment; (b) with 0.33LiI/0.33KI/0.33CsI electrolyte, 

(blue) before hydrogen treatment, (red) after hydrogen treatment. * indicates spinning 

sidebands.
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Discussion

Although the mechanisms of these reactions have not yet been studied in detail, the 

presented results demonstrate the efficacy of using electrolytes with hydride materials 

and reveals the importance of inter-particle transport in hydrogen exchange.  For the 

MgH2/Sn system, the overall reaction is given by

                                                    2MgH2 + Sn  2H2 + Mg2Sn                                             

(1)     
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Dehydrogenation must involve concerted reaction between MgH2 and Sn because Mg 

metal, as a distinct phase, cannot form under the reaction conditions with the initial H2 

overpressure (ie, P(H2)  2 bar and Treaction  225 °C compared to Teq(2 bar) ~ 300 °C ).  

Thus, Mg2Sn can form only where MgH2 and Sn are in direct contact at the atomic scale, 

as depicted in Figure 5. 

Figure 5.  Dehydrogenation of MgH2/Sn. (a) In the solid/solid reaction (without electrolyte) 

formation of Mg2Sn only occurs where MgH2 and Sn are in contact at the atomic level 

(shown in yellow).  (b) In an electrolyte, solubilized Mg2+ ions can diffuse through the 
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electrolyte while electrons are conducted through solid-solid contacts enabling Mg2Sn 

formation over the whole surface of a Sn particle (shown in yellow).

However, MgH2 at the surface of a magnesium hydride particle in contact with an 

electrolyte could dissociate releasing H2 and forming a Mg2+ ion and two electrons.  The 

Mg2+ ions could become solvated and diffuse in the electrolyte to the surface of a Sn 

particle while the electrons are transported through solid-solid contacts.  At the Sn particle 

surface, 2Mg2+ + 4e- + Sn can react to form Mg2Sn.  These steps are depicted in Figure 

5 and given by 

                         2MgH2  2Mg2+(sol-MgH2) + 4e-(MgH2) + 2H2(g)         dehydrogenation     

(2)    

                                        2Mg2+(sol-MgH2)  2Mg2+(sol-Sn)          diffusion in electrolyte    

(3)

                                                       4e-(MgH2)  4e-(Sn)                  solid-solid conduction     

(4)
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                                      2Mg2+(sol-Sn) + 4e-(Sn) + Sn  Mg2Sn            alloy formation         

(5)

where 2Mg2+(sol-MgH2) and 2Mg2+(sol-Sn) refer to Mg2+ ions solubilized at the surfaces 

of MgH2 and Sn, and 4e-(MgH2) and 4e-(Sn) refer to electrons in the MgH2 and Sn solid 

phases, respectively.  During diffusion (Eq. 3) the local environment of the Mg2+(sol) is 

presumably modified from that of the Li+ and K+ cations in the molten LiBH4/KBH4 eutectic 

to account for the 2+ charge.  Given the nature of the eutectic, it is unlikely that MgH2, a 

partially covalent hydride, or metallic Sn would be directly soluble.   Although alloy 

formation (Eq. 5) may be initiated over the whole surface of the Sn that is wet by the 

electrolyte (Figure 5b), this step still involves solid state diffusion of Mg and/or Sn through 

the growing Mg2Sn phase.  Thus, this step may benefit from reduced particle sizes.  The 

metallic nature of Sn may facilitate this reaction by enabling electron conduction (Eq. 4) 

from the MgH2 (one reason that this system was chosen).  Some support for this scenario, 

is provided by the increased dehydrogenation rates observed when MgI2 was added to 

the LiBH4-KBH4 eutectic (Figure 1).  Without any added Mg salt, there would theoretically 

be no Mg2+ ions to initiate the reaction, although we suspect that, in this case, oxidization 
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products (such as MgO or Mg(OH)2) likely present at the surface of MgH2 particles35 could 

provide some dissolved Mg2+ ions.  With intentionally added MgI2, the Mg2+ concentration 

may well be increased enabling faster reaction.  Although the solubility of MgI2 in the 

LiBH4-KBH4 eutectic is not known, iodide was chosen for its similar ionic size to [BH4]-, 

which should improve solubility.

For hydrogenation of MgB2, hydrogen interacts, at least initially, with only a single 

phase.  Based on equilibrium phases, hydrogenation could proceed through a mixed 

MgB12H12/MgH2 step, although hydrogenation has been shown to proceed directly to 

Mg(BH4)2 during the initial hydrogenation step.36  In this case, similarly enhanced 

transport of ionic species along the surface of MgB2 particles could account for the 

increased hydrogen uptake.  For example, the possibility of localized Mg2+ or [BH4]- 

transport along the MgB2/electrolyte interface could facilitate Mg(BH4)2 formation.  In 

addition, some dissolution of Mg(BH4)2 as it forms may expose fresh MgB2 surfaces for 

reaction.  Even without atomic transport, the formation of Mg(BH4)2 from MgB2 likely 

involves significant increase in surface area, at least in part associated with the large 
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volume change of up to 400%.  The free energy penalty associated with this increased 

area may be lowered by the presence of solid-liquid electrolyte as opposed to solid-gas 

interfacial energies.

These examples, MgH2/Sn and MgB2, have been discussed as limiting cases of 

enhanced inter-particle and particle surface transport.  However, likely both inter-particle 

and surface transport occur in both systems and can be facilitated by liquid electrolytes.  

In contrast, we expect that solid state diffusion within particles would likely not be affected.  

In addition to atomic transport, inclusion of electrolytes may enhance the reactivity of 

solid phases by etching passivating surface layers.  For example, specifically using the 

iodide-based 0.33LiI/0.33KI/0.33CsI eutectic (or halide-based electrolytes in general) 

may facilitate reaction by etching, or at least partially dissolving, surface oxides present 

on the MgB2 surface.36  This dissolution would expose MgB2 to hydrogen analogous to 

the manner in which aqueous halide solutions are known to promote corrosion of metals, 

such as aluminum, that have passivating oxides.37
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Ideally and most simply, an electrolyte would function only as a solvent for mobile ions 

or passivating surface layers without further participating or altering the overall hydrogen 

cycling reaction.  However, to be suitable solvents for the hydride phase cations and be 

compatible with the hydrogen chemical potentials required for hydrogen cycling, possible 

electrolytes may likely need to be sufficiently chemically similar to the hydride phases that 

they do alter or participate in the desired overall reaction.  For example, for MgH2/Sn with 

the LiBH4-KBH4 electrolyte,  LixSn alloys and Mg(BH4)2 are possible side reaction 

products.  For the initial characterization performed in this work, significant side reaction 

was not observed.  Specifically, the major phases observed by XRD after a single 

dehydrogenation and rehydrogenation cycle were Mg2Sn and MgH2 + Sn, respectively 

(Figure S4).  Further work is needed to determine if side reaction products may 

accumulate slowly over multiple cycles.  We note that although side reactions may 

ultimately occur, if meeting requirements, the overall hydride-electrolyte combination may 

be considered as a suitable hydrogen storage material system.

Conclusion
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In summary, we have used electrolytes to improve the hydrogen cycling in multiple-

phase hydrogen storage materials and shown significant improvements for the 

dehydrogenation and rehydrogenation of MgH2/Sn and the hydrogenation of MgB2.  

These results clearly indicate that inter-particle transport between different phases and/or 

transport over the surface of individual particles is an important aspect of the hydrogen 

cycling reaction that can be facilitated (and studied) using electrolytes.  The compositions 

used in this study contained an excess of electrolyte (>50 wt% electrolyte mass fraction).  

To be useful for practical hydrogen storage applications, lower electrolyte fractions (e.g. 

<~25 wt%) would need to be demonstrated.  We consider this a reasonable possibility 

given that optimized modern Li-ion batteries contain ~15 wt% electrolyte with respect to 

the full mass (active material + electrolyte mass).  One path here is optimizing the particle 

sizes.  Larger particles have lower surface area and therefore require less electrolyte to 

coat; however, they also have longer diffusion distances within and along particles.  

Moving forward, a wide range of electrolytes may be considered including other eutectics, 

solvents with dissolved salts, and ionic liquids, although thermal stability, chemical 

stability at hydride chemical potentials, and vapor pressure all present stringent 
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requirements.  Finally, it seems that the use of electrolytes could significantly improve the 

rates of hydrogen exchange in perhaps many other complex hydride materials including 

metal alanates, amides, borohydrides, and destabilized systems.  

Supporting information

Experimental methods, other potential electrolytes investigated, tabular data from 

Figure 1, Figures S1 to S8.

Notes

** Current address: Phillips 66 Research Center, Bartlesville, OK 74003.

The authors declare no competing financial interests.

Acknowledgments

Page 25 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

This work was supported by the U. S. Department of Energy under contract DE-

EE0007849.  The NMR facility at the California Institute of Technology was supported by 

the National Science Foundation (NSF) under Grant Number 9724240 and partially 

supported by the MRSEC Program of the NSF under Award Number DMR-520565.   

Sandia authors gratefully acknowledge research support from the U.S. Department of 

Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office 

through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC). 

Sandia National Laboratories is a multimission laboratory managed and operated by 

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned 

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National 

Nuclear Security Administration under contract DE-NA-0003525. This paper describes 

objective technical results and analysis. Any subjective views or opinions that might be 

expressed in the paper do not necessarily represent the views of the U.S. Department of 

Energy or the United States Government.

Page 26 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

References

(1) Li, H.-W.; Wu, G.; Chen, P. Solid Hydrogen Storage Materials: Non-interstitial 

Hydrides, Chap 15 in Hydrogen Energy Engineering Sasaki, K.; Li, H.-W.; Hayashi, A.; 

Yamabe, J.; Ogura, T.; Lyth, S. M. Eds., 2016, Springer Japan.

(2) Callini, E.; Atakli, Z. O. K.; Hauback, B. C.; Orimo, S.; Jensen, C.; Dornheim, M.; 

Grant, D.; Cho, Y. W.; Chen, P.; Hjörvarsson, B.; et al. Complex and Liquid Hydrides for 

Energy Storage. Appl. Phys. A 2016, 122:353.

(3) Stavila, V.; Klebanoff, L.; Vajo, J. J.; Chen. P. Development of On-Board Reversible 

Complex Metal Hydrides for Hydrogen Storage, Chap. 6 in Hydrogen Storage Technology 

Materials and Applications Klebanoff, L. ed., 2013, CRC Press. 

(4) Vajo, J. J.; Olson, G. L. Hydrogen Storage in Destabilized Chemical Systems. Scr. 

Mater. 2007, 56, 829– 834.

Page 27 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28

(5) 

Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Bösenberg, U.; Klassen, T.; Gutfleisch, O.

; Bormann, R. Hydrogen Storage in Magnesium-Based Hydrides and Hydride 

Composites. Scr. Mater. 2007, 56, 841– 846.

(6) Frankcombe, F.; Proposed Mechanisms for the Catalytic Activity of Ti in NaAlH4. 

Chem. Rev. 2012, 112, 2164-2178.

(7) Yu, X.; Tang, Z.; Sun, D.; Ouyang, L.; Zhu, M. Recent Advances and Remaining 

Challenges of Nanostructured Materials for Hydrogen Storage Applications. Prog. Mater. 

Sci. 2017, 88, 1-48.

(8) de Jongh, P. E.; Allendorf, M.; Vajo, J. J.; Zlotea, C. Nanoconfined Light Metal 

Hydrides for Reversible Hydrogen Storage. MRS Bull. 2013, 38, 488– 494.

(9) Vajo, J. J. Influence of Nano-Confinement on the Thermodynamics and 

Dehydrogenation Kinetics of Metal Hydrides. Curr. Opin. Sol. State Mater, Sci. 2011, 15, 

52-61.

Page 28 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29

(10) Zheng, X.; Xu, W.; Xiong, Z.; Chua, Y.; Wu, G.; Qin, S.; Chen, H.; Chen, P. Ambient 

Temperature Hydrogen Desorption from LiAlH4-LiNH2 Mediated by HMPA. J. Mater. 

Chem. 2009, 19, 8426-8431.

(11) Zheng, X.; Xiong, Z.; Qin, S.; Chua, Y.; Chen, H.; Chen, P. Dehydrogenation of 

LiAlH4 in HMPA. Int. J. Hy. Energy 2008, 33, 3346-3350.

(12) Xiong, Z.; Chua, Y.-S.; Wu, G,; Xu, W.; Chen, P.; Shaw, W.; Karamkar, A.; Linehan, 

J. Smurthwaite, T.; Autrey, T. Interaction of Lithium Hydride and Ammonia Borane in THF. 

Chem. Comm. 2008, 5595-5597.

(13) Zhang, S.; Taniguchi, A.; Xu, Q.; Takeichi, N. Takeshita, H. T.; Kuriyama, N.; 

Kiyobayashi, T.; Understanding the Effect of Titanium Species on the Decomposition of 

Alanates in Homogeneous Solution. J. Alloy. Compds. 2006, 413, 218-221.

(14) Mohtadi, R.; Sivasubramanian, P.; Hydrogen Release from Complex Metal 

Hydrides by Solvation in Ionic Liquids. 2014, US patent 8,771,635.

Page 29 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

(15) Humphries, T. D.; Birkmire, D.; McGrady, G. S.; Hauback, B.; Jensen, C. M.; 

Regeneration of LiAlH4 at Sub-Ambient Temperatures Studied by Multinuclear NMR 

Spectroscopy. J. Alloy. Compds. 2017, 723, 1150-1154.

(16) Chong, M.; Matsuo, M.; Orimo, S.; Autrey, T.; Jensen, C. M.; Selective Reversible 

Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based 

Hydrogen Storage? Inorg. Chem. 2015, 54, 4120-4125.

(17) Ni, C.; L. Yang, Muckerman, J. T.; Graetz, J.; Aluminum Hydride Separation using 

N –Alkylmorpholine. J. Phys. Chem. C 2013, 117 14983.

(18) Graetz, J.; Wegrzyn, J.; Reilly, J. J. Regeneration of Lithium Aluminum Hydride 

(LiAlH4). J. Amer. Chem. Soc. 2008, 130, 17790.

(19) Wang. J.; Ebner. A. D.; Ritter, J. A.; Synthesis of Metal Complex Hydrides for 

hydrogen Storage. J. Phys. Chem. C 2007, 111, 14917-14924.

Page 30 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31

(20) Wang. J.; Ebner. A. D.; Ritter, J. A.; Physiochemical Pathway for Cyclic 

Dehydrogenation and Rehydrogenation of LiAlH4. J. Am. Chem. Soc. 2006, 128, 5949-

5954.

(21) Wang, H.; Wu, G.; Cao, H.; Pistidda, C.; Chaudhary A.-L.; Garroni, S.; Dornheim, 

M.; Chen, P. Near Ambient Condition Hydrogen Storage in a Synergized Tricomponent 

Hydride System. Adv. Energy Mater. 2017, 1602456.

(22) Tan, Y.; Guo, Y.; Li, S. Sun, W.; Zhu, Y.; Li, Q.; Yu, X.; A liquid-Based Eutectic 

System: LiBH4•NH3-nNH3BH3 with High Dehydrogenation Capacity at Moderate 

Temperature. J. Mater. Chem. 2011, 21, 14509-14515.

(23) Graham, K. R.; Kemmitt, T.; Bowden, M. E.; High Capacity Hydrogen Storage in a 

Hybrid Ammonia Borane-Lithium Amide Material. Energy Environ. Sci. 2009, 2, 706-710.

(24) Crivello, J.-C.; Denys, R. V.; Dornheim, M.; Felderhoff, M.; Grant, D. M.; Huot, J.; 

Jensen, T. R.; de Jongh, P.; Latroche, M.; Walker, et al.; V. A. Mg-Based Compounds for 

Hydrogen and Energy Storage. Appl. Phys. A 2016, 122:85.

Page 31 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



32

(25) Chaudhary, A.-L.; Paskevicius, M.; Sheppard, D. A.; Buckley, C. E.; 

Thermodynamic Destabilization of MgH2 and NaMgH3 using Group IV Elements Si, Ge, 

or Sn. J. Alloys Compd. 2015, 623, 109-116.

(26) Janot, R.; Cuevas, F.; Latroch, M. Percheron-Guégan, A.; Influence of Crystallinity 

on the Structural and Hydrogenation Properties of Mg2X Phases (X = Ni, Si, Ge, Sn). 

Intermetallics 2006, 14, 163-169.

(27) Chaudhary, A.-L.; Sheppard, D. A.; Paskevicius, M; Webb, C. J.; Gray, E. M. 

Buckley, C. E. Mg2Si Nanoparticle Synthesis for High Pressure Hydrogenation. J. Phys 

Chem. C 2014, 118, 1240-1247.

(28) Polanski, M.; Bystrzycki, J.; The Influence of Different Additives on the Solid-State 

Reaction of Magnesium Hydride (MgH2) with Si. Int. J. Hydrog. Energy 2009, 34, 7692-

7699.

(29) Vajo, J. J.; Mertens, F.; Ahn, C. C.; Bowman Jr., R. C.; Fultz, B.; Altering Hydrogen 

Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 

Destabilized with Si. J. Phys. Chem. B 2004, 108, 13977-13983.

Page 32 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



33

(30) Zavorotynska, O.; El-Karbachi, A.; Deledda, S. Hauback, B. Recent Progress in 

Magnesium Borohydride Mg(BH4)2: Fundamentals and Applications for Energy Storage. 

Int. J. Hydrog. Energy 2016, 41, 14387-14403.

(31) Allendorf, M. D.; Stavila, V.; White, J. L.; Wang, T. C.; He, Y.; Klebanoff, L. E.; 

Kolasinski, R. D.; El Gabaly, F. Zhao, X. HyMARC: Sandia’s Technical Effort. Hydrogen 

and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation. 2018 

https://www.hydrogen.energy.gov/pdfs/review18/st128_allendorf_2018_o.pdf.

(32) Severa, G.; Rönnebro, E.; Jensen, C. M. Direct Hydrogenation of Magnesium 

Boride to Magnesium Borohydride. Chem Commun. 2010, 46, 421-423.

(33) Ley, M. B.; Roedern, E.; Jensen, T. R.; Eutectic Melting of LiBH4-KBH4. Phys. 

Chem. Chem. Phys. 2014, 16, 24194-24199.

(34) Newhouse, R. J. Part I. Femtosecond Transient Absorption Studies of Metal and 

Semiconductor Nanostructures; Part 2. Synthesis and Characterization of Complex 

Hydride Materials for Hydrogen Storage Applications. Ph.D. Dissertation, University of 

California Santa Cruz, Santa Cruz, CA, 2011.

Page 33 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34

(35) House, S. D.; Vajo, J. J.; Ren, C.; Zaluzec, N. J.; Rockett, A. A.; Robertson, I. M.; 

Impact of Initial Catalyst Form on the 3D Structure and Performance of Ball-Milled Ni-

Catalyzed MgH2 for Hydrogen Storage. Int. J. Hydrog. Energy 2017, 42, 5177-5187.

(36) Ray, K. G.; Klebanoff, L. E.; Lee, J. R. I.; Stavila, V.; Heo, T. W.; Shea, P.; Baker, 

A. A.; Kang, S.; Bagge-Hansen, M.; Liu, Y.-S.; et al.; Elucidating the Mechanism of MgB2 

Initial Hydrogenation via a Combined Experimental-Theoretical Study. Phys. Chem. 

Chem. Phys. 2017, 19, 22646.

(37) Natishan, P. M.; O’Grady, W. E. Chloride Ion Interactions with Oxide-Covered 

Aluminum Leading to Pitting Corrosion: A Review. J. Electrochem. Soc. 2014, 161, C421-

C432.

Page 34 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



35

TOC Graphic

Page 35 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


