257 research outputs found
Defining the word âseamountâ
Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, 1 (2010): 20-21.The term seamount has been
defined many times (e.g., Menard, 1964; Wessel, 2001; Schmidt and
Schmincke, 2000; Pitcher et al., 2007; International Hydrographic
Organization, 2008; Wessel et al., 2010) but there is no âgenerally
acceptedâ definition. Instead, most definitions serve the particular
needs of a discipline or a specific paper
Seamount sciences : quo vadis?
Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, 1 (2010): 212-213.Seamounts are fascinating natural
ocean laboratories that inform us about
fundamental planetary and ocean
processes, ocean ecology and fisheries,
and hazards and metal resources. The
more than 100,000 large seamounts
are a defining structure of global
ocean topography and biogeography,
and hundreds of thousands of smaller
ones are distributed throughout every
ocean on Earth
Seafloor seismic monitoring of an active submarine volcano : local seismicity at Vailulu'u Seamount, Samoa
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q06007, doi:10.1029/2004GC000702.We deployed five ocean bottom hydrophones (OBHs) for a 1-year seismic monitoring study of Vailulu'u Seamount, the youngest and easternmost volcano in the Samoan Archipelago. Four instruments were placed on the summit crater rim at 600â700 m water depth, and one was placed inside the crater at 1000 m water depth. An analysis of the first 45 days of records shows a very large number of seismic events, 211 of them local. These events define a steady background activity of about four seismic events per day, increasing to about 10 events per day during a week of heightened seismic activity, which peaked at 40 events during 1 day. We identified 107 earthquakes, whose arrivals could be picked on all five stations and that are likely located within the seamount, based on their similar waveforms. Two linear trends are defined by 21 of these events. These are extremely well correlated and located, first downward then upward on a steeply inclined plane that is close to the axial plane of the southeast rift as it emerges from the main summit of Vailulu'u. These events resemble volcanotectonic earthquakes from subaerial volcanoes in displaying very coherent seismic waveforms and by showing systematic, narrowly defined progressions in hypocenter locations. We propose that these events reflect brittle rock failure due to magma redistribution in or near a central magma reservoir.The bulk of this work was funded by NSF-OCE, in grants to HS and SRH and the OBSIP facility at Scripps
Age systematics of two young en echelon Samoan volcanic trails
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q07025, doi:10.1029/2010GC003438.The volcanic origin of the Samoan archipelago can be explained by one of three models, specifically, by a hot spot forming over a mantle plume, by lithospheric extension resulting from complex subduction tectonics in the region, or by a combination of these two processes, either acting sequentially or synchronously. In this paper, we present results of 36 high-resolution 40Ar/39Ar incremental heating age analyses for the initial (submarine) phase of Samoan volcanoes, ranging from 13.2 Ma for the westernmost Samoan seamounts to 0.27 Ma in the eastern Samoan volcanic province. Taken as a whole, our new age data point to a hot spot origin for the shield-building volcanism in the Samoan lineament, whereby seamounts younger than 5 Ma are consistent with a model of constant 7.1 cm/yr plate motion, analogous to GPS measurements for the Pacific Plate in this region. This makes our new 40Ar/39Ar ages of the submarine basalts all older compared to recent absolute plate motion (APM) models by Wessel et al. (2008), which are based on the inversion of twelve independent seamount trails in the Pacific relative to a fixed reference frame of hot spots and which predict faster plate motions of around 9.3 cm/yr in the vicinity of Samoa. The Samoan ages are also older than APM models by Steinberger et al. (2004) taking into account the motion of hot spots in the Pacific alone or globally. The age systematics become more complicated toward the younger end of the Samoan seamount trail, where its morphology bifurcates into two en echelon subtracks, termed the VAI and MALU trends, as they emanate from two eruptive centers at Vailulu'u and Malumalu seamount, respectively. Spaced âŒ50 km apart, the VAI and MALU trends have distinct geochemical characters and independent but overlapping linear 40Ar/39Ar age progressions since 1.5 Ma. These phenomena are not unique to Samoa, as they have been observed at the Hawaiian hot spot, and can be attributed to a geochemical zoning in its underlying mantle source or plume. Moreover, the processes allowing for the emergence of two distinct eruptive centers in the Samoan archipelago, the stepped offset of these subtracks, and their slight obliqueness with respect to the overall seamount trail orientation may very well be controlled by local tectonics, stresses, and extension, also causing the rejuvenated volcanism on the main islands of Savai'i, Upolu, and Tutuila since 0.4 Ma.Financial support is provided by NSFâOCE 0002875 and
NSFâOCE 0351437
Seamounts
Definition: Seamounts are literally mountains rising from the seafloor. More specifically, they are âany geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmassesâ (Staudigel et al., 2010). The term âguyotâ can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as âknollsâ (e.g., Hirano et al., 2008). âPetit spotsâ are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006)
Recommended from our members
Defining the word "Seamount"
Reading through this issue of Oceanography, it will become
apparent that researchers in different disciplines see their
seamounts in quite different ways. The term seamount has been
defined many times (e.g., Menard, 1964; Wessel, 2001; Schmidt and
Schmincke, 2000; Pitcher et al., 2007; International Hydrographic
Organization, 2008; Wessel et al., 2010) but there is no âgenerally
acceptedâ definition. Instead, most definitions serve the particular
needs of a discipline or a specific paper. Inconsistencies are
common among different publications and, most notably, differ
from the recommendations of the International Hydrographic
Organization and International Oceanographic Commission
(International Hydrographic Organization, 2008). It is not the
goal of this note to arbitrate or remedy these inconsistencies.
However, as seamount researchers begins to coalesce into one
broad, multidisciplinary research community, it is important
to: (1) have a simple definition that explains which features are
included under the umbrella of seamount research and which are
not, providing an essential condition for defining the seamount
research community, and (2) respect and be aware of differences
among disciplinary definitions, as they may stand in the way of
consistently applying one disciplinary data set to another
A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean
The use of neodymium (Nd) isotopes to reconstruct past water mass mixing relies upon the quasi-conservative behaviour of this tracer, whereas recent studies in the modern oceans have suggested that boundary exchange, involving the addition of Nd from ocean margin sediments, may be an important process in the Nd cycle. Here we suggest that the relative importance of water mass advection versus boundary exchange can be assessed where the deep western boundary current in the Indian Ocean flows past the Madagascan continental margin; a potential source of highly unradiogenic Nd. Foraminiferal coatings and bulk sediment reductive leachates are used to reconstruct bottom water Nd isotopic composition (ΔNd) in 8 Holocene age coretops, with excellent agreement between the two methods. These data record spatial variability of âŒ4 ΔNd units along the flow path of Circumpolar Deep Water; ΔNdââ8.8 in the deep southern inflow upstream of Madagascar, which evolves towards ΔNdââ11.5 offshore northern Madagascar, whereas ΔNdââ7.3 where deep water re-circulates in the eastern Mascarene Basin. This variability is attributed to boundary exchange and, together with measurements of detrital sediment ΔNd, an isotope mass balance suggests a deep water residence time for Nd of â€400 yr along the Madagascan margin. Considering deglacial changes, a core in the deep inflow upstream of Madagascar records ΔNd changes that agree with previous reconstructions of the Circumpolar Deep Water composition in the Southern Ocean, consistent with a control by water mass advection and perhaps indicating a longer residence time for Nd in the open ocean away from local sediment inputs. In contrast, sites along the Madagascan margin record offset ΔNd values and reduced glacialâinterglacial variability, underlining the importance of detecting boundary exchange before inferring water mass source changes from Nd isotope records. The extent of Madagascan boundary exchange appears to be unchanged between the Holocene and Late Glacial periods, while a consistent shift towards more radiogenic ΔNd values at all sites in the Late Glacial compared to the Holocene may represent a muted signal of a change in water mass source or composition
Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography
The dissolved neodymium (Nd) isotopic distribution in the deep oceans is determined by continental weathering inputs, water mass advection, and boundary exchange between particulate and dissolved fractions. Reconstructions of past Nd isotopic variability may therefore provide evidence on temporal changes in continental weathering inputs and/or ocean circulation patterns over a range of timescales. However, such an approach is limited by uncertainty in the mechanisms and importance of the boundary exchange process, and the challenge in reliably recovering past seawater Nd isotopic composition (ΔNd) from deep sea sediments. This study addresses these questions by investigating the processes involved in particulateâsolution interactions and their impact on Nd isotopes. A better understanding of boundary exchange also has wider implications for the oceanic cycling and budgets of other particle-reactive elements. Sequential acid-reductive leaching experiments at pH âŒ2â5 on deep sea sediments from the western Indian Ocean enable us to investigate natural boundary exchange processes over a timescale appropriate to laboratory experiments. We provide evidence that both the dissolution of solid phases and exchange processes influence the ΔNd of leachates, which suggests that both processes may contribute to boundary exchange. We use major element and rare earth element (REE) data to investigate the pools of Nd that are accessed and demonstrate that sediment leachate ΔNd values cannot always be explained by admixture between an authigenic component and the bulk detrital component. For example, in core WIND 24B, acid-reductive leaching generates ΔNd values between â11 and â6 as a function of solution/solid ratios and leaching times, whereas the authigenic components have ΔNd â â11 and the bulk detrital component has ΔNd â â15. We infer that leaching in the Mascarene Basin accesses authigenic components and a minor radiogenic volcanic component that is more reactive than Madagascan-derived clays. The preferential mobilisation of such a minor component demonstrates that the Nd released by boundary exchange could often have a significantly different ΔNd composition than the bulk detrital sediment. These experiments further demonstrate certain limitations on the use of acid-reductive leaching to extract the ΔNd composition of the authigenic fraction of bulk deep sea sediments. For example, the detrital component may contain a reactive fraction which is also acid-extractible, while the incongruent nature of this dissolution suggests that it is often inappropriate to use the bulk detrital sediment elemental chemistry and/or ΔNd composition when assessing possible detrital contamination of leachates. Based on the highly systematic controls observed, and evidence from REE patterns on the phases extracted, we suggest two approaches that lead to the most reliable extraction of the authigenic ΔNd component and good agreement with foraminiferal-based approaches; either (i) leaching of sediments without a prior decarbonation step, or (ii) the use of short leaching times and low solution/solid ratios throughout
Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q02001, doi:10.1029/2008GC002236.Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal âshield buildingâ stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866â0.512909, 206Pb/204Pb: 18.904â19.054; La/Sm: 3.71â4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912â0.512948, 206Pb/204Pb: 19.959â20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999â0.513050, 206Pb/204Pb: 19.080â19.237; La/Sm: 5.73â8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet peridotite, and pyroxenite, calculating melt productivity functions with depth to evaluate the effect of potential temperature and lithospheric thickness. This type of melting model appears to explain the isotopic variation in a range of small to large OIVs, in particular for OIVs occurring far from the complicating effects of plate boundaries and continental crust, constraining their geodynamic origin.JBT acknowledges financial support from
the French Institut National des Sciences de lâUnivers. The
isotope work at SDSU was made possible by NSF and Keck
grants to BBH
Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000âm off Hawaii
© International Society for Microbial Ecology, 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 5 (2011): 1748â1758, doi:10.1038/ismej.2011.48.A novel hydrothermal field has been discovered at the base of LĆihi Seamount, Hawaii, at 5000âmbsl. Geochemical analyses demonstrate that âFeMO Deepâ, while only 0.2â°C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as âumbersâ (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures.Funding has been provided by the NSF
Microbial Observatories Program (KJE, DE, BT, HS and
CM), by the Gordon and Betty Moore Foundation (KJE),
the College of Letters, Arts, and Sciences at the University
of Southern California (KJE) and by the NASA Astrobiology
Institute (KJE, DE)
- âŠ