295 research outputs found

    Effects of μCT radiation on tissue engineered bone-like constructs

    Get PDF
    High-resolution, non-destructive imaging with micro-computed tomography (μCT) enables in situ monitoring of tissue engineered bone constructs. However, it remains controversial, if the locally imposed X-ray dose affects bone development and thus could influence the results. Here, we developed a model system for μCT monitoring of tissue engineered bone-like constructs. We examined the in vitro effects of high-resolution μCT imaging on the cellular level by using pre-osteoblastic MC3T3-E1 cells embedded into three-dimensional collagen type I matrices. We found no significantly reduced cell survival 2h after irradiation with a dose of 1.9Gy. However, 24h post-irradiation, cell survival was significantly decreased by 15% compared to non-irradiated samples. The highest dose of 7.6Gy decreased survival of the pre-osteoblastic MC3T3-E1 cells by around 40% at 2days post-irradiation. No significant increase of alkaline phosphatase (ALP) activity at 2days post-irradiation was found with a dose of 1.9Gy. However, ALP activity was significantly decreased after 7days. Using our model system, the results indicate that μCT imaging with doses as low as 1.9Gy, which is required to obtain a reasonable image quality, can induce irreparable damages on the cellular leve

    A Convenient Route to Monoalkyl-Substituted Phosphanylboranes (HRP–BH2–NMe3): Prospective Precursors to Poly[(alkylphosphino)boranes]

    Get PDF
    A simple method to access borylphosphonium iodides [RH2P-BH2 center dot NMe3]I (1a: R = Me; 1b: R = Et; 1c: R = nPr) by the addition of iodoalkanes to PH2-BH2 center dot NMe3 was developed. Complexes 1a-c were characterized by multinuclear NMR spectroscopy, and 1a and 1b additionally by single-crystal X-ray diffraction. It was possible to synthesize the Lewis-base-stabilized organosubstituted phosphanylborane MePH-BH2 center dot NMe3 (2) from [MePH2-BH2 center dot NMe3] I (1a). Thermolysis of 2 generated a soluble, low-molecular-mass poly(alkylphosphinoborane)consisting of at least 40 repeat units, as identified by ESI-MS. These results are promising for the future preparation of a wide range of Lewis-base-stabilized phosphanylboranes, which are of interest as precursors to poly[(alkylphosphino)boranes] and are otherwise difficult to access by conventional metal-catalyzed methods

    Effect of charged impurity correlation on transport in monolayer and bilayer graphene

    Full text link
    We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density nin_i and can even increase with nin_i.Comment: 11 pages, 10 figures. arXiv admin note: text overlap with arXiv:1104.066

    Increased dose efficiency of breast CT with grating interferometry

    Full text link
    Refraction-based x-ray imaging can overcome the fundamental contrast limit of computed tomography (CT), particularly in soft tissue, but so far has been constrained to high-dose ex vivo applications or required highly coherent x-ray sources, such as synchrotrons. Here we demonstrate that grating interferometry (GI) is more dose efficient than conventional CT in imaging of human breast under close-to-clinical conditions. Our system, based on a conventional source and commercial gratings, outperformed conventional CT for spatial resolutions better than 263 µm and absorbed dose of 16 mGy. The sensitivity of GI is constrained by grating fabrication, and further progress will lead to significant improvements of clinical CT

    Patient-specific estimation of detailed cochlear shape from clinical CT images

    Get PDF
    PURPOSE A personalized estimation of the cochlear shape can be used to create computational anatomical models to aid cochlear implant (CI) surgery and CI audio processor programming ultimately resulting in improved hearing restoration. The purpose of this work is to develop and test a method for estimation of the detailed patient-specific cochlear shape from CT images. METHODS From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. RESULTS We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images. The evaluation is based on classic generic metrics, where we achieve competitive accuracy with the state-of-the-art methods for the task. Additionally, we expand the evaluation with a few anatomically specific scores. CONCLUSIONS The paper presents the process of building and using the SDM of the cochlea. Compared to current best practice, we demonstrate competitive performance and some useful properties of our method

    Risk factors for adverse perinatal outcomes in imprisoned pregnant women: a systematic review

    Get PDF
    BACKGROUND: Imprisoned pregnant women constitute an important obstetric group about whom relatively little is known. This systematic review was conducted to identify the risk factors associated with adverse pregnancy outcome present in this group of women. METHODS: The review was conducted according to a prespecified protocol. Studies of any design were included if they described information on any of the pre-specified risk factors. We calculated the results as summary percentages or odds ratios where data was available on both cases and population controls. RESULTS: The search strategy identified 27 relevant papers of which 13 met the inclusion criteria, involving 1504 imprisoned pregnant women and 4571 population control women. Imprisoned women are more likely to be single, from an ethnic minority, and not to have completed high school. They are more likely to have a medical problem which could affect the pregnancy outcome and yet less likely to receive adequate antenatal care. They are also more likely to smoke, drink alcohol to excess and take illegal drugs. CONCLUSION: Imprisoned women are clearly a high risk obstetric group. These findings have important implications for the provision of care to this important group of women

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Disruption of Dnmt1/PCNA/UHRF1 Interactions Promotes Tumorigenesis from Human and Mice Glial Cells

    Get PDF
    Global DNA hypomethylation is a hallmark of cancer cells, but its molecular mechanisms have not been elucidated. Here, we show that the disruption of Dnmt1/PCNA/UHRF1 interactions promotes a global DNA hypomethylation in human gliomas. We then demonstrate that the Dnmt1 phosphorylations by Akt and/or PKC abrogate the interactions of Dnmt1 with PCNA and UHRF1 in cellular and acelluar studies including mass spectrometric analyses and the use of primary cultured patient-derived glioma. By using methylated DNA immunoprecipitation, methylation and CGH arrays, we show that global DNA hypomethylation is associated with genes hypomethylation, hypomethylation of DNA repeat element and chromosomal instability. Our results reveal that the disruption of Dnmt1/PCNA/UHRF1 interactions acts as an oncogenic event and that one of its signatures (i.e. the low level of mMTase activity) is a molecular biomarker associated with a poor prognosis in GBM patients. We identify the genetic and epigenetic alterations which collectively promote the acquisition of tumor/glioma traits by human astrocytes and glial progenitor cells as that promoting high proliferation and apoptosis evasion
    corecore