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Abstract
Purpose A personalized estimation of the cochlear shape can be used to create computational anatomical models to aid
cochlear implant (CI) surgery and CI audio processor programming ultimately resulting in improved hearing restoration. The
purpose of this work is to develop and test a method for estimation of the detailed patient-specific cochlear shape from CT
images.
Methods From a collection of temporal bone μCT images, we build a cochlear statistical deformation model (SDM), which
is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used for
regularization of a non-rigid image registration procedure between a patient CT scan and a μCT image, allowing us to
estimate the detailed patient-specific cochlear shape.
Results We test the accuracy and precision of the predicted cochlear shape using both μCT and CT images. The evaluation
is based on classic generic metrics, where we achieve competitive accuracy with the state-of-the-art methods for the task.
Additionally, we expand the evaluation with a few anatomically specific scores.
Conclusions The paper presents the process of building and using the SDMof the cochlea. Compared to current best practice,
we demonstrate competitive performance and some useful properties of our method.
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Introduction

Cochlear implants (CI) have become an established and
successful way of treating severe hearing impairment and
deafness. In the top performing cases, recipients achieve
near-normal speech perception, but a large variability in the
auditory restoration outcomes remains a challenge to be dealt
with [28]. One of several solutions is to achieve a better
understanding of the individual cochlear shape, as this allows
customizing and optimizing of the surgical planning and
subsequent CI programming according to the specific recipi-
ent [18]. Preoperative computed tomography (CT) scans are
routinely performed during the assessment of CI candidacy,
in order to roughly estimate the size of the cochlea and to plan
the surgical procedure. However, intracochlear structures,
such as the basilar membrane, cannot be sufficiently visual-
ized, and it remains very challenging to extract information
of individual cochlear anatomy from clinical CT images.
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Image processing strategies have been developed to
improve the visual quality of the CT data [27], and there
are also different approaches for predicting the true patient
cochlear anatomy based on the sparse information of the
CT scan. One way is to estimate the “global” morpho-
metrics of the cochlea by fitting various spiral models to
the data [7,8,10]. These studies are characterized by mea-
surements of a few observable parameters, such as the
cochlear height and the basal turn diameter, from which
additional morphometrics are inferred using idealized math-
ematical spiral formulations. Another reported strategy [2]
uses a model-to-image-based optimization procedure. The
approach is to estimate nine shape parameters of a 3D spiral
shellmodel,which is done byfitting the surface to image edge
features (gradient magnitude and orientation with respect to
the surface normal) of theCTdata.None of thesemethods are
able to account for the true regional variability and can only
represent generic shapes. For instance, with suchmethods all
cross sections of the cochlea are perfectly circular, contrary
to what can be observed from high-resolution anatomical
studies [1]. Naturally, this puts a limit on the accuracy of
predicting the correct patient-specific anatomy.

These approaches are perfectly logical and sensible under
the assumption that the CT images are all one has to work
with. The anatomical information available in this data is
very limited. Intracochlear structures like the basilar mem-
brane and spiral lamina ossea are completely invisible, and
even the complete gross geometry of the cochlear spiral
can be difficult to observe and describe fully. A strategy to
advance further therefore requires learning about the cochlear
anatomy beforehand. A learning-based strategy involves
training a model of the anatomy and its population variabil-
ity from high-resolution μCT datasets. This model can be
based on a much larger number of parameters to describe not
only the overall shape but also some intracochlear anatomy.
The accurate model is then adapted to the sparse anatomical
information provided by the CT data using an optimization
method.

One of the most successful learning-based approach to
date [17] uses an active shapemodel (ASM) [5] of the cochlea
built froma small selection of ex vivoμCTscans. The learned
statistical model provides a shape prior, which can regularize
a registration procedure between a patient CT scan and a CT-
atlas enhancedwith amodel of the detailed cochlear anatomy.

This study follows a strategy along the same principles.
We start from an accurate high-resolution computational
model of the cochlea extracted from μCT data [3]. Non-
rigidly adapting thismodel to a patient CT scanwill provide a
patient-specific estimation of the anatomy. Using a selection
of training μCT datasets, we extract a statistical deforma-
tion model (SDM) [22], describing statistically in which
ways a μCT scan can deform to match another cochlear
shape. During an image registration process, the SDM acts

as a regularizing shape prior. This allows us to adapt the
computational model to a clinical CT scan, ensuring anatom-
ically plausible outputs. Compared to the method of [17],
we present an alternative to using statistical shape modeling
(SSM) methodology to tackle the same problem. The SSM
approach uses a mesh-to-volume registration, where a set of
surface points are fitted to the gradients of the target image.
Theproposed approachuses instead a volume-to-volume reg-
istration.The advancement lies partly in themethodology and
partly in the underlying data, both contributing to an estima-
tion of more anatomically accurate models with an arguably
better potential for computational applications. The paper
presents and evaluates the overall framework for building a
SDM of the cochlea from high-resolution μCT data and the
application of the subsequent SDM-regularized fitting pro-
cedure to preoperative CT data.

Materials andmethods

Data and segmentation

Anatomical reference model The method builds up from a
reference dataset where the cochlear spiral and certain intra-
cochlear structures can be seen and segmented. We use the
μCT scan from [3]. In short, it is a human temporal bone,
which is cut to contain the cochlea and most of the vestibule
and then preserved by freezing. It was scanned using a com-
mercial μCT (μCT 50, Scanco Medical AG, Brüttisellen,
Switzerland) and reconstructed in isotropic 5.9 µm voxels.
The preparation and high resolution allowed for a manual
segmentation of the cochlear spiral and the cochlear parti-
tion (approximation to the basilar membrane) (see Fig. 1 top
left). A 3D surfacemodel with these structures was generated
from the segmentation using Marching Cubes [14] followed
by a surface reconstruction [19] to obtain a well-formed tri-
angulated mesh (see Fig. 1 right). The model forms the basis
for a cochlear computational model suited for simulating for
instance CI surgery and the effect of CI placement.

Training data Additional scans are needed for learn-
ing the anatomical variability. The μCT training data for
building a statistical deformation model (SDM) (see “SDM-
regularized registration” section) consists of 18 dried tempo-
ral bone specimenswithoutmajor deviations from the normal
cochlear anatomy. The samples were scanned with a com-
mercial μCT (μCT 100, Scanco Medical AG, Brüttisellen,
Switzerland) and processed to obtain isotropic voxels of
24.5µm.Due to being dried bones, no soft tissues are present
in the images. The cochlear lumen was segmented as a single
object (see Fig. 1), using the semiautomatic tools available
in ITK-SNAP [30] for doing the bulk of the work. However,
manual corrections were needed to remove obvious errors,
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Fig. 1 Illustration of the
training (left bottom) and
reference data (left top) and the
3D reference surface model
(right). The segmentation
includes the scalae (red),
background (black), bone
(blue), and cochlear partition
(yellow). The latter two were
only segmented for the
reference dataset

to obtain consistent quality and to ensure a smooth closing
of the openings at the oval and round window.

Test data For the purpose of validating the SDM-fitting
procedure, a test dataset is required. It consists of 14 samples
(originating from eight different cadaverous head speci-
mens), which were preserved with the Thiel preservation
method [23]. The samples were scanned both with CBCT
(ProMax® 3DMax, Planmeca, Finland) andμCT (μCT 100,
Scanco Medical AG, Brüttisellen, Switzerland), and recon-
structed in, respectively, 150 and 24.5 µm isotropic voxels.

Image processing and registration

The first part of the model building process involves cre-
ating correspondences via image registration between the
reference and training data in order to describe the statistical
variability. The full methodology is detailed in [11]. In short,
the N training datasets, IM, are in turn registered with the
reference data, IF, in two steps: rigid initialization followed
by deformable registration.

A description of the non-rigid image registration stage is
recapped here, with the relevant settings used for the data
in this study. The registration task is cast as an optimization
problem,

μ̂ = argmin
μ

C(Tμ, IF, IM) (1)

where a cost function C is minimized with respect to a
transformation Tμ. Describing the volumetric data by their
respective spatial domains, ΩF ⊂ R

3 and ΩM ⊂ R
3, this

transformation maps points in the fixed domain to the mov-
ing, i.e., Tμ : ΩF → ΩM, and it is parametrized by the vector
μ.

The elastix software library [13] is used for the imple-
mentation and optimization of the problem. A three-level
cubic B-spline grid is chosen for the non-rigid transforma-
tion model. For the three levels, we use an isotropic grid

point spacing of {60,18,6} voxels and an isotropic Gaussian
smoothing with a kernel size of {6,2,1} voxels, respectively,
thus starting with a coarse alignment which is gradually
refined. Typically, the registration would be between the
grayscale or segmented volumes. From experience, we know
that it is then difficult to tune the various parameters involved
to achieve good and consistent results because of the com-
plexity and variation in the cochlear spiral shape. We found
it beneficial to do a preprocessing step of the segmenta-
tions explicitly modeling the cochlear spiral, leading to an
increased registration accuracy in the order of 20% for certain
measures (see [11]). The strategy is to solve a partial differ-
ential equation for the cochlear volume representing the heat
propagation through the cochlea starting from the apex as
the hottest point. These heat maps encode a global similarity
between the samples regardless of local differences, which
can be used in the registration. The procedure is modified
to favor an alignment of regions with similar heat, thereby
capturing the cochlear spiral turning more realistically. This
is expressed in the chosen cost function,

C = α · SSim(μ, HF, HM) + (1 − α) · PBE(μ) (2)

where α = 0.9 is an experimentally chosen weight parameter.
The similarity, SSim, between the heat maps, HF and HM, is
measured using sum of squared differences. The term PBE

is the energy-bending regularization used to penalize strong
changes and foldings in the transformation. The optimiza-
tion is solved using adaptive stochastic gradient Descent [12]
with a maximum of 1500 iterations. Only a subset (218 ran-
dom coordinates) of the voxel domain close to the cochlea
was sampled for each iteration, in order to reduce the com-
putational burden and focus the optimization to the area
of interest. This was achieved by applying a binary sam-
pling mask to the reference dataset, which was generated by
dilating the cochlear segmentation with a spherical kernel
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(radius=20 voxels). These settings were fixed for all three
levels of the registration.

Statistical deformationmodel construction

The output of the registrations (“Image processing and
registration” section) is N=18 corresponding B-spline defor-
mation fields, each one describing how the cochlear reference
can deform to fit an instance of the training data. This infor-
mation is built into a statistical deformation model (SDM)
by applying a principal component analysis (PCA) over the
B-spline parameters as described in [22]. It is a statistical
description of the covariance of the deformation fields in a
low dimensional space. The first mode of this space would
typically describe the deformations changing the overall size
of the cochlea. In order of decreasing influence, the remain-
ing modes explain other shape changes, such as the cochlear
turning. As it is a linear and generative model, it can be used
to create deformation fields that deform the reference model
according to the variation seen in the population (the training
data), while ensuring that the output is still a valid cochlea.
Building the SDMwas done using the Statismo [15] software
package. For additional details on SDMs we refer to [9,22].
The main advantage is that the model can be incorporated
into a registration procedure where the reference μCT is fit-
ted to a previously unseen conventional CT dataset (the target
CT), as described in the following section.

SDM-regularized registration

1. Initialization The first step of the fitting procedure is to
rigidly align the target CT scan to the position and orien-
tation of the reference volume. In practice, it is difficult to
know anything about the initial location of the cochlea in
the CT images. An automatic initialization procedure could
be developed, drawing inspiration from [17] or [21], but for
this study the initialization was done using a landmark-based
rigid transformation. The following four landmarks were
placed manually in each dataset; the center of the round
window at the bony overhang, the center of the modiolus,
respectively, in the basal and apical turn, and finally the
basal turn inner wall across from the round window [29].
The landmark transform is followed by a rigid image regis-
tration between the reference dataset and the CT scan. This
step can provide a slight correction of the orientation and
position in order to prevent a bias or uncertainty from the
user-based landmarking.

2. Non-rigid registration Once the target CT and refer-
ence μCT are rigidly aligned, the deformable fitting process
can be started, which is formulated as an image registration
(see Eq. 1). The major modification is that the transforma-
tion model changes to a SDM-regularized cubic B-spline.
In principle, this is a B-spline transform with the same

grid definition as in the previously described registration
model. However, each grid point cannot vary freely any-
more. Instead, they deform in accordance with the learned
covariance structure, which is described with a maximum of
N modes of variation of the PCA. An implementation of this
transformation type is available in the Statismo-elastix
integration. The cost function can now be stated as,

CSDM = SSim(μSDM, IF, ICT ), (3)

where IF is the reference μCT, and ICT is a volume in CT
resolution (e.g., one of the test datasets). As the reference
data displays smaller structures not visible on the CT data, it
can be considered a multimodality registration problem and
we therefore use mutual information as the similarity metric.
Further, a low degree of Gaussian smoothing was applied to
the reference image (isotropic kernel size: 1.5 voxels). The
blurring seems to have a negligible negative impact, as the
difference in image resolution to the CT data is substantial.
The optimizationwas done using adaptive stochastic gradient
descent [12] with default settings, and 215 random samples
per iteration for a maximum of 500 iterations.

Evaluation

Cross-validation on training data All the training data con-
tain a ground truth segmentation and are rigidly aligned
with the reference data set, eliminating the need for the ini-
tialization step described in “SDM-regularized registration”
section. The training data is first downsampled using a cubic
interpolation kernel to 0.2 mm isotropic voxels in order to
represent clinical training “CT” data. The SDM is built from
the registrations of all the training samples except one. The
SDM-fitting procedure is performed against the remaining
samplewith all availablemodes of variations. This is repeated
for all training samples corresponding to a leave-one-out
cross-validation of the SDM-fitting performance.

Generic measures The accuracy and precision are quan-
tified with the Dice score of the binary segmentations, and
with the bidirectional mean and maximum surface errors of
the mesh models, as detailed in the following.

Let LF(μSDM) be the cochlear lumen segmentation after
it has been fitted to a training CT image. We measure the
overlap against the ground truth segmentation, LGT, of the
corresponding micro-CT image using the Dice score [6]:

DSC = 2 · ∣
∣LGT

⋂
LF(μSDM)

∣
∣

|LGT| + |LF(μSDM)| (4)

Similarly, let SF(μSDM) be the fitted 3D model, and SGT

the ground truth surface extracted from each training micro-
CT segmentation. There is no direct point correspondence
between the surfaces, and they each contain a varying number
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of vertices. The evaluation scores are therefore based on the
closest points, i.e., the minimum Euclidean distance from a
point, p, to any of the points, q, in the other surface, S:

d(p,S) = min∀q∈S
(||p − q||2

)

(5)

The mean surface error, ds̄ , of each sample is then defined
as the average of all the closest point distances:

ds̄ = 1

NF + NGT
⎛

⎝
∑

∀p∈SF(μSDM)

d(p,SGT) +
∑

∀p∈SGT
d(p,SF(μSDM))

⎞

⎠

(6)

where NF and NGT are the total number of points in the
respective surfaces.

The maximum surface error, dm , is then similarly defined
as the maximum of all the closest point distances:

dm = max

{

max∀p∈SF (μSDM)
d(p,SGT), max∀p∈SGT

d(p,SF (μSDM))

}

(7)

Landmark and morphology measures The above-
mentioned generic measures are commonly reported and
represent the overall performance in a general way. We sup-
plement the evaluation with scores that highlight the errors
at some specific landmark locations and with morphological
differences, both serving to further illustrate the accuracy of
the predicted shape. We manually placed the landmark of
the cochlear apex, center of the round and oval window and
measured the cochlear length, width and height according to
the consensus definition of [26]. We further manually traced
the ridge of the lamina spiralis from the scalae segmenta-
tion allowing us to provide a measure of the spiral length.
The landmark placements and morphological measurements
were done a single time by one rater for each training micro-
CT dataset, the reference and for each predicted shape (i.e.,
the SDM-fit).

Test data As these datasets have no ground truth seg-
mentations, our evaluation was restricted to include only the
above-mentioned landmark andmorphological (except spiral
length) errors. The landmark placement and measurements
of cochlear dimensions were made in the μCT test data, but
the SDM is fitted to the CT data with 12 available modes of
variations. The first 12 modes explain approximately 95% of
the total variance in the training data. It is common practice
to drop the remaining modes [9], as these are likely to rep-
resent noise in the training data and the model construction
process. Note thatμCTdatawere also carefully co-registered

to its respective CT dataset, with a procedure using land-
mark initialization plus a rigid image registration, similar to
the procedure described in “SDM-regularized registration”
section.

Results and discussion

A qualitative evaluation of the SDM-fitting is illustrated in
Fig. 2, and the statistics for the average predicted cochlear
shape accuracy and precision are given inTable 1. The visual-
ized test datawere chosen to reflect this average performance,
and not the best case scenario. The interpretation of the
generic evaluation measures remains to be somewhat quali-
tative in nature, as the absolute values are difficult to evaluate
on their own. The Dice score is in the high end and the mean
surface error below the CT data voxel size, which is satisfac-
tory.

Compared to the results in [17] our genericmeasures show
an improvement (aDice score of 0.88 vs. 0.75, amean surface
error of 0.11 vs. 0.20 mm and a max surface error of 0.58
vs. 0.80 mm, respectively). As we use different data sets,
amount of training data and SSM methodology, it is difficult
to pinpoint what is contributing to the improved results. In
the following, we will argue for the benefits of our approach
and for the novelty of our work.

We use more training data in comparison to [17], which
should improve the anatomical variability captured in the sta-
tistical model. Nonetheless, more μCT training data would
still be desirable. Perhaps more importantly, our data have a
better resolution, which allows us to improve on the anatom-
ical representation of the cochlea. We are able to model the
cochlea as a single structure including the lamina spiralis, and
then add the cochlear partition separately. This configuration
gives a better potential for using the predicted cochlear shape
in computational simulations, e.g., simulating [4,16,25] and
analyzing [20,24] surgical CI-insertions.

A general advantage of the SDM procedure over the
Active Shape Model approach [5,17] is that it can handle
intra-anatomical structures nicely. Since the intracochlear
anatomy is not visible in clinical CT images, there is no
gradient information for guiding the fit. Further, as the train-
ing μCT data support is limited, it is currently not feasible
to make credible statistical shape models of intracochlear
structures on their own. With the SDM strategy everything is
described as deformation fields, which lets the intracochlear
structures passively follow the deformations based on the
contrasted CT image information.
Besides the generic scores presented in Table 1, we have tried
to bring forth additional measures for evaluating shape pre-
diction accuracy in the form of anatomically specific scores.
The apex error is shown to be larger than the maximum
surface error, which demonstrates that the SDM and fitting
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Fig. 2 Qualitative accuracy of the SDM-fit (red for cochlear scalae
and yellow for cochlear partition) and comparison to the ground truth
cochlear scalae segmentation (green) when available. The top left figure
shows the fit on a training “CT” image, i.e., a downsampled μCT from
the set of training data. The bottom left shows the corresponding 3D

models shifted apart in order to get a global view of the correct and
predicted cochlear shape. The top right figure shows the SDM-fit on a
CT image from the set of test data, and finally the bottom right shows
the same fit overlaid on the corresponding co-registered test μCT data

Table 1 Statistics of fitting
performance, reported as the
mean ± 1 standard deviation.
Landmark scores are reported in
number of voxels of the CT data

Error measure Cross-validation Test data

Generic Dice score 0.88 ± 0.02 –

Mean surface error (mm) 0.11 ± 0.01 –

Max surface error (mm) 0.58 ± 0.11 –

Landmark Apex error (voxels) 4.2 ± 2.4 5.8 ± 3.0

Oval window error (voxels) 1.3 ± 0.5 2.5 ± 1.6

Round window error (voxels) 1.4 ± 0.8 1.8 ± 0.8

Morphologic Cochlear length error (mm) 0.02 ± 0.2 −0.06 ± 0.4

Cochlear width error (mm) 0.08 ± 0.2 −0.04 ± 0.2

Cochlear height error (mm) 0.05 ± 0.2 0.05 ± 0.2

Spiral length error (mm) 0.06 ± 1.1 –

procedure still have some limitations with the apical region
of the cochlea. From the test data shown in Fig. 2, it can
also be observed that the predicted cochlear outer edge can
have slight offsets from the correct position. These limita-
tions can be explained by a combination of two factors. First,
the low resolution of the CT data results in relatively weak

image gradients for guiding the fit. Second, the limited size
of training data affects the precision of the model, since the
learned modes of variation may not be able to sufficiently
represent true regional independence. However, μCT data is
a scarce source to work with and the required processing and
segmentation are time consuming tasks. The limitations of

123



International Journal of Computer Assisted Radiology and Surgery

the model should be seen in this light, and its application can
still be valuable. Providing a fair prediction of the cochlear
anatomy can bemore useful than assuming nothing about the
anatomy, which is still the general practice today [18]. The
remaining landmark and morphological measures show that
the SDM procedure otherwise provides an accurate predic-
tion, although the precision could be improved. The observed
high standard deviation is also influenced by the uncertainty
from the manual measurements and landmark placements.
The exact errors should therefore be interpreted with some
care, but they do provide a sense of the order of magnitude
of the prediction accuracy.

In a real clinical scenario, the CT data might have
additional noise and artefacts from patient motion, metal
implants, etc. Since the fitting procedure is heavily con-
strained by the learned model, the method is expected to
be robust against these disturbances, unless the images are
severely corrupted. For certain applications and medical
problems, a better performance might be required before the
method can be used. On the other hand, the work of Noble et
al. [18] has already demonstrated that these types of methods
can be used in real life to modify CI programming. Since our
method is more accurate at predicting the cochlea shape, we
reason that our method can address the same problem with a
performance that is at least on par.

The cochlear partition does not seem to fit very accurately
on the test data (Fig. 2 bottom right). It is important to note
two things in this regard. First, the basilar membrane is not
visible in the CT data, meaning there is no image information
to guide the fitting method to give a good result. Secondly,
the variability of this structure is not modeled in the SDM. It
is simply a passive structure following the fitting of cochlea.
This is a reflection of how the partition was seen in the ref-
erence data, but we have no guarantee of how precise and
representative that generally is.

The true test of usability would of course be a measure
of improvement in hearing restoration outcomes in CI-users
(following a procedure similar to [18]).However, such amea-
sure would be influenced by many other confounding factors
than just the accuracy of cochlear shape prediction, which is
the scope of this study. Generally, we assume that a better
shape prediction would positively correlate with improve-
ments in CI hearing restoration.

Conclusion

Methods for predicting the cochlear shape from CT images
allow for improvements in procedures regarding the CI
surgery and postoperative CI audio processor programming.
Using statistical shape models is a promising strategy, as it
can allow for estimation of intracochlear anatomical features
as well. We have here presented and evaluated an alterna-

tive method to the classical active shape model approach,
and shown that it achieves an accuracy competitive with the
current state of the art.
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