54 research outputs found

    Estimate of Leaf Area Index in an Old-Growth Mixed Broadleaved-Korean Pine Forest in Northeastern China

    Get PDF
    Leaf area index (LAI) is an important variable in the study of forest ecosystem processes, but very few studies are designed to monitor LAI and the seasonal variability in a mixed forest using non-destructive sampling. In this study, first, true LAI from May 1st and November 15th was estimated by making several calibrations to LAI as measured from the WinSCANOPY 2006 Plant Canopy Analyzer. These calibrations include a foliage element (shoot, that is considered to be a collection of needles) clumping index measured directly from the optical instrument, TRAC (Tracing Radiation and Architecture of Canopies); a needle-to-shoot area ratio obtained from shoot samples; and a woody-to-total area ratio. Second, by periodically combining true LAI (May 1st) with the seasonality of LAI for deciduous and coniferous species throughout the leaf-expansion season (from May to August), we estimated LAI of each investigation period in the leaf-expansion season. Third, by combining true LAI (November 15th) with litter trap data (both deciduous and coniferous species), we estimated LAI of each investigation period during the leaf-fall season (from September to mid-November). Finally, LAI for the entire canopy then was derived from the initial leaf expansion to the leaf fall. The results showed that LAI reached its peak with a value of 6.53 m2 m−2 (a corresponding value of 3.83 m2 m−2 from optical instrument) in early August, and the mean LAI was 4.97 m2 m−2 from May to November using the proposed method. The optical instrument method underestimated LAI by an average of 41.64% (SD = 6.54) throughout the whole study period compared to that estimated by the proposed method. The result of the present work implied that our method would be suitable for measuring LAI, for detecting the seasonality of LAI in a mixed forest, and for measuring LAI seasonality for each species

    Assessment of the efficiency of the aleppo pine Pinus halepensis Mill. natural regeneration in the Eastern Mediterranean on example of Israel

    No full text
    This paper deals with the management of Mediterranean Planted Conifer Forests (MPCF), dominated by the aleppo pine Pinus halepensis and the potential for using natural regeneration as a basis for transformation of simply structured even-aged and mono crops plantations into mixed forest. We studied the variation along a rainfall gradient, in the natural regeneration of tree species. The study was conducted in four forests located within the Mediterranean zone of Israel, which extends from the semiarid northern Negev desert (rainfall ca. 300 mm per year) in the south to the humid central region close the coast line (ca 550 mm per year). Standing trees measurements including mean tree height, diameter at breast height, crown width, canopy cover, stand density of the mature strata and the number of saplings and their species composition along with the landscape characteristics (slope, aspect, percentage of rock cover and forest floor light regime) have been performed at randomly established 200 m2 area circular plots. Although a water supply is the main limiting resource for forest growth and productivity, so far no significant relationship between the quantity of regeneration and precipitation could be found. Strong linear correlation between the number of the mature trees and pine’s regeneration have been revealed and the detailed management plan of how to support a natural regeneration using a principal of Continues Cover Forestry was suggested for MPCF, including a recommendation for intensity and time of thinning

    Burned Area Mapping Using Multi-Temporal Sentinel-2 Data by Applying the Relative Differenced Aerosol-Free Vegetation Index (RdAFRI)

    No full text
    Assessing the development of wildfire scars during a period of consecutive active fires and smoke overcast is a challenge. The study was conducted during nine months when Israel experienced massive pyro-terrorism attacks of more than 1100 fires from the Gaza Strip. The current project strives at developing and using an advanced Earth observation approach for accurate post-fire spatial and temporal assessment shortly after the event ends while eliminating the influence of biomass burning smoke on the ground signal. For fulfilling this goal, the Aerosol-Free Vegetation Index (AFRI), which has a meaningful advantage in penetrating an opaque atmosphere influenced by biomass burning smoke, was used. On top of it, under clear sky conditions, the AFRI closely resembles the widely used Normalized Difference Vegetation Index (NDVI), and it retains the same level of index values under smoke. The relative differenced AFRI (RdAFRI) set of algorithms was implemented at the same procedure commonly used with the Relative differenced Normalized Burn Ratio (RdBRN). The algorithm was applied to 24 Sentinel-2 Level-2A images throughout the study period. While validating with ground observations, the RdAFRI-based algorithms produced an overall accuracy of 90%. Furthermore, the RdAFRI maps were smoother than the equivalent RdNBR, with noise levels two orders of magnitude lower than the latter. Consequently, applying the RdAFRI, it is possible to distinguish among four severity categories. However, due to different cloud cover on the two consecutive dates, an automatic determination of a threshold level was not possible. Therefore, two threshold levels were considered through visual inspection and manually assigned to each imaging date. The novel procedure enables calculating the spatio-temporal dynamics of the fire scars along with the statistics of the burned vegetation species within the study area

    Precipitation-Sensitive Dynamic Threshold: A New and Simple Method to Detect and Monitor Forest and Woody Vegetation Cover in Sub-Humid to Arid Areas

    No full text
    Remote-sensing tools and satellite data are often used to map and monitor changes in vegetation cover in forests and other perennial woody vegetation. Large-scale vegetation mapping from remote sensing is usually based on the classification of its spectral properties by means of spectral Vegetation Indices (VIs) and a set of rules that define the connection between them and vegetation cover. However, observations show that, across a gradient of precipitation, similar values of VI can be found for different levels of vegetation cover as a result of concurrent changes in the leaf density (Leaf Area Index—LAI) of plant canopies. Here we examine the three-way link between precipitation, vegetation cover, and LAI, with a focus on the dry range of precipitation in semi-arid to dry sub-humid zones, and propose a new and simple approach to delineate woody vegetation in these regions. By showing that the range of values of Normalized Difference Vegetation Index (NDVI) that represent woody vegetation changes along a gradient of precipitation, we propose a data-based dynamic lower threshold of NDVI that can be used to delineate woody vegetation from non-vegetated areas. This lower threshold changes with mean annual precipitation, ranging from less than 0.1 in semi-arid areas, to over 0.25 in mesic Mediterranean area. Validation results show that this precipitation-sensitive dynamic threshold provides a more accurate delineation of forests and other woody vegetation across the precipitation gradient, compared to the traditional constant threshold approach
    corecore