503 research outputs found

    A new generalized Kohn-Sham method for fundamental band-gaps in solids

    Full text link
    We developed a method for calculating solid-state ground-state properties and fundamental band-gaps using a generalized Kohn-Sham approach combining a local density approximation (LDA) functional with a long-range explicit exchange orbital functional. We found that when the range parameter is selected according to the formula \gamma=A/(\eps_\inf - \eps_\tilde) where \eps_\inf is the optical dielectric constant of the solid and \eps_\tilde= 0.84 and A= 0.216a0^(-1), predictions of the fundamental band-gap close to the experimental values are obtained for a variety of solids of different types. For most solids the range parameter \gamma is small (i.e. explicit exchange is needed only at long distances) so the predicted values for lattice constants and bulk modulii are similar to those based on conventional LDA calculations

    A database of ground-motion recordings, site profiles, and amplification factors from the Groningen gas field in the Netherlands

    Get PDF
    A comprehensive database that has been used to develop ground motion models for induced earthquakes in the Groningen gas field is provided in a freely accessible online repository. The database includes more than 8500 processed ground motion recordings from 87 earthquakes of local magnitude ML between 1.8 and 3.6, obtained from a large network of surface accelerographs and borehole geophones placed at 50 m depth intervals to a depth of 200 m. The 5%-damped pseudo-acceleration spectra and Fourier amplitude spectra of the records are also provided. Measured shear-wave velocity (VS) profiles, obtained primarily from seismic Cone Penetration Tests (CPTs), are provided for 80 of the ∼100 recording stations. A model representing the regional dynamic soil properties is presented for the entire gas field plus a 5 km onshore buffer zone, specifying lithology, VS, and damping for all layers above the reference baserock horizon located at about 800 m depth. Transfer functions and frequency-dependent amplification factors from the reference rock horizon to the surface for the locations of the recording stations are also included. The database provides a valuable resource for further refinement of induced seismic hazard and risk modeling in Groningen as well as for generic research in site response of thick, soft soil deposits and the characteristics of ground motions from small-magnitude, shallow-focus induced earthquakes

    A validated integrated clinical and molecular glioblastoma long-term survival-predictive nomogram.

    Get PDF
    Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adulthood. Despite multimodality treatments, including maximal safe resection followed by irradiation and chemotherapy, the median overall survival times range from 14 to 16 months. However, a small subset of GBM patients live beyond 5 years and are thus considered long-term survivors. Methods: A retrospective analysis of the clinical, radiographic, and molecular features of patients with newly diagnosed primary GBM who underwent treatment at The University of Texas MD Anderson Cancer Center was conducted. Eighty patients had sufficient quantity and quality of tissue available for next-generation sequencing and immunohistochemical analysis. Factors associated with survival time were identified using proportional odds ordinal regression. We constructed a survival-predictive nomogram using a forward stepwise model that we subsequently validated using The Cancer Genome Atlas. Results: Univariate analysis revealed 3 pivotal genetic alterations associated with GBM survival: both high tumor mutational burden ( Conclusions: Our newly devised long-term surviva

    Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival

    Get PDF
    INTRODUCTION: Contrast-enhanced MRI (CE-MRI) represents the current mainstay for monitoring treatment response in glioblastoma multiforme (GBM), based on the premise that enlarging lesions reflect increasing tumor burden, treatment failure, and poor prognosis. Unfortunately, irradiating such tumors can induce changes in CE-MRI that mimic tumor recurrence, so called post treatment radiation effect (PTRE), and in fact, both PTRE and tumor re-growth can occur together. Because PTRE represents treatment success, the relative histologic fraction of tumor growth versus PTRE affects survival. Studies suggest that Perfusion MRI (pMRI)–based measures of relative cerebral blood volume (rCBV) can noninvasively estimate histologic tumor fraction to predict clinical outcome. There are several proposed pMRI-based analytic methods, although none have been correlated with overall survival (OS). This study compares how well histologic tumor fraction and OS correlate with several pMRI-based metrics. METHODS: We recruited previously treated patients with GBM undergoing surgical re-resection for suspected tumor recurrence and calculated preoperative pMRI-based metrics within CE-MRI enhancing lesions: rCBV mean, mode, maximum, width, and a new thresholding metric called pMRI–fractional tumor burden (pMRI-FTB). We correlated all pMRI-based metrics with histologic tumor fraction and OS. RESULTS: Among 25 recurrent patients with GBM, histologic tumor fraction correlated most strongly with pMRI-FTB (r = 0.82; P < .0001), which was the only imaging metric that correlated with OS (P<.02). CONCLUSION: The pMRI-FTB metric reliably estimates histologic tumor fraction (i.e., tumor burden) and correlates with OS in the context of recurrent GBM. This technique may offer a promising biomarker of tumor progression and clinical outcome for future clinical trials

    Partial “targeted” embolisation of brain arteriovenous malformations

    Get PDF
    The treatment of pial arteriovenous brain malformations is controversial. Little is yet known about their natural history, their pathomechanisms and the efficacy and risks of respective proposed treatments. It is known that only complete occlusion of the AVM can exclude future risk of haemorrhage and that the rates of curative embolisation of AVMs with an acceptable periprocedural risk are around 20 to 50%. As outlined in the present article, however, partial, targeted embolisation also plays a role. In acutely ruptured AVMs where the source of bleeding can be identified, targeted embolisation of this compartment may be able to secure the AVM prior to definitive treatment. In unruptured symptomatic AVMs targeted treatment may be employed if a defined pathomechanism can be identified that is related to the clinical symptoms and that can be cured with an acceptable risk via an endovascular approach depending on the individual AVM angioarchitecture. This review article gives examples of pathomechanisms and angioarchitectures that are amenable to this kind of treatment strategy

    Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    Get PDF
    Background: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications.Methodology/Principal Findings: We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (KRT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and KRT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine.Conclusions/Significance: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications
    corecore