166 research outputs found

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD

    Music, neurology, and psychology in the nineteenth century

    Full text link
    This chapter examines connections between research in music, neurology, and psychology during the late-nineteenth century. Researchers in all three disciplines investigated how music is processed by the brain. Psychologists and comparative musicologists, such as Carl Stumpf, thought in terms of multiple levels of sensory processing and mental representation. Early thinking about music processing can be linked to the start of Gestalt psychology. Neurologists such as August Knoblauch also discussed multiple levels of music processing, basing speculation on ideas about language processing. Knoblauch and others attempted to localize music function in the brain. Other neurologists, such as John Hughlings Jackson, discussed a dissociation between music as an emotional system and language as an intellectual system. Richard Wallaschek seems to have been the only one from the late-nineteenth century to synthesize ideas from musicology, psychology, and neurology. He used ideas from psychology to explain music processing and audience reactions and also used case studies from neurology to support arguments about the nature of music. Understanding the history of this research sheds light on the development of all three disciplines—musicology, neurology, and psychology.https://digitalcommons.chapman.edu/music_books/1000/thumbnail.jp

    Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster

    Get PDF
    Rare actinomycetes represent an underexploited source of new bioactive compounds. Here, we report the use of a targeted metabologenomic approach to identify piperazyl compounds in the rare actinomycete Lentzea flaviverrucosa DSM 44664. These efforts to identify molecules that incorporate piperazate building blocks resulted in the discovery and structural elucidation of two dimeric biaryl-cyclohexapeptides, petrichorins A and B. Petrichorin B is a symmetric homodimer similar to the known compound chloptosin, but petrichorin A is unique among known piperazyl cyclopeptides because it is an asymmetric heterodimer. Due to the structural complexity of petrichorin A, solving its structure required a combination of several standard chemical methods plus in silico modeling, strain mutagenesis, and solving the structure of its biosynthetic intermediate petrichorin C for confident assignment. Furthermore, we found that the piperazyl cyclopeptides comprising each half of the petrichorin A heterodimer are made via two distinct nonribosomal peptide synthetase (NRPS) assembly lines, and the responsible NRPS enzymes are encoded within a contiguous biosynthetic supercluster on the L. flaviverrucosa chromosome. Requiring promiscuous cytochrome p450 crosslinking events for asymmetric and symmetric biaryl production, petrichorins A and B exhibited potent in vitro activity against A2780 human ovarian cancer, HT1080 fibrosarcoma, PC3 human prostate cancer, and Jurkat human T lymphocyte cell lines with IC50 values at low nM levels. Cyclic piperazyl peptides and their crosslinked derivatives are interesting drug leads, and our findings highlight the potential for heterodimeric bicyclic peptides such as petrichorin A for inclusion in future pharmaceutical design and discovery programs.Fil: Li, Chunshun. University Of Hawaii; Estados UnidosFil: Hu, Yifei. University Of Hawaii; Estados Unidos. Washington University in St. Louis; Estados UnidosFil: Wu, Xiaohua. University Of Hawaii; Estados UnidosFil: Stumpf, Spencer D.. Washington University in St. Louis; Estados UnidosFil: Qi, Yunci. Washington University in St. Louis; Estados UnidosFil: D'Alessandro, John M.. Washington University in St. Louis; Estados UnidosFil: Nepal, Keshav K.. Washington University in St. Louis; Estados UnidosFil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Cao, Shugeng. University Of Hawaii; Estados UnidosFil: Blodgett, Joshua A.V.. Washington University in St. Louis; Estados Unido

    SARS-CoV-2 requires acidic pH to infect cells

    Get PDF
    Publisher Copyright: Copyright © 2022 the Author(s). Published by PNAS.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein–catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.Peer reviewe

    Instabilities in crystal growth by atomic or molecular beams

    Full text link
    The planar front of a growing a crystal is often destroyed by instabilities. In the case of growth from a condensed phase, the most frequent ones are diffusion instabilities, which will be but briefly discussed in simple terms in chapter II. The present review is mainly devoted to instabilities which arise in ballistic growth, especially Molecular Beam Epitaxy (MBE). The reasons of the instabilities can be geometric (shadowing effect), but they are mostly kinetic or thermodynamic. The kinetic instabilities which will be studied in detail in chapters IV and V result from the fact that adatoms diffusing on a surface do not easily cross steps (Ehrlich-Schwoebel or ES effect). When the growth front is a high symmetry surface, the ES effect produces mounds which often coarsen in time according to power laws. When the growth front is a stepped surface, the ES effect initially produces a meandering of the steps, which eventually may also give rise to mounds. Kinetic instabilities can usually be avoided by raising the temperature, but this favours thermodynamic instabilities. Concerning these ones, the attention will be focussed on the instabilities resulting from slightly different lattice constants of the substrate and the adsorbate. They can take the following forms. i) Formation of misfit dislocations (chapter VIII). ii) Formation of isolated epitaxial clusters which, at least in their earliest form, are `coherent' with the substrate, i.e. dislocation-free (chapter X). iii) Wavy deformation of the surface, which is presumably the incipient stage of (ii) (chapter IX). The theories and the experiments are critically reviewed and their comparison is qualitatively satisfactory although some important questions have not yet received a complete answer.Comment: 90 pages in revtex, 45 figures mainly in gif format. Review paper to be published in Physics Reports. Postscript versions for all the figures can be found at http://www.theo-phys.uni-essen.de/tp/u/politi

    Fine-Scale Population Recombination Rates, Hotspots, and Correlates of Recombination in the Medicago truncatula Genome

    Get PDF
    Recombination rates vary across the genome and in many species show significant relationships with several genomic features, including distance to the centromere, gene density, and GC content. Studies of fine-scale recombination rates have also revealed that in several species, there are recombination hotspots, that is, short regions with recombination rates 10–100 greater than those in surrounding regions. In this study, we analyzed whole-genome resequence data from 26 accessions of the model legume Medicago truncatula to gain insight into the genomic features that are related to high- and low-recombination rates and recombination hotspots at 1 kb scales. We found that high-recombination regions (1-kb windows among those in the highest 5% of the distribution) on all three chromosomes were significantly closer to the centromere, had higher gene density, and lower GC content than low-recombination windows. High-recombination windows are also significantly overrepresented among some gene functional categories—most strongly NB–ARC and LRR genes, both of which are important in plant defense against pathogens. Similar to high-recombination windows, recombination hotspots (1-kb windows with significantly higher recombination than the surrounding region) are significantly nearer to the centromere than nonhotspot windows. By contrast, we detected no difference in gene density or GC content between hotspot and nonhotspot windows. Using linear model wavelet analysis to examine the relationship between recombination and genomic features across multiple spatial scales, we find a significant negative correlation with distance to the centromere across scales up to 512 kb, whereas gene density and GC content show significantly positive and negative correlations, respectively, only up to 64 kb. Correlations between recombination and genomic features, particularly gene density and polymorphism, suggest that they are scale dependent and need to be assessed at scales relevant to the evolution of those features

    Human Population Differentiation Is Strongly Correlated with Local Recombination Rate

    Get PDF
    Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and FST has a qualitatively different relationship for FST between African and non-African populations and for FST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235

    Get PDF
    Several studies in recent years have provided evidence that Pseudomonas aeruginosa has a non-clonal population structure punctuated by highly successful epidemic clones or clonal complexes. The role of recombination in the diversification of P. aeruginosa clones has been suggested, but not yet demonstrated using multi-locus sequence typing (MLST). Isolates of P. aeruginosa from five Mediterranean countries (n = 141) were subjected to pulsed-field gel electrophoresis (PFGE), serotyping and PCR targeting the virulence genes exoS and exoU. The occurrence of multi-resistance (≥3 antipseudomonal drugs) was analyzed with disk diffusion according to EUCAST. MLST was performed on a subset of strains (n = 110) most of them had a distinct PFGE variant. MLST data were analyzed with Bionumerics 6.0, using minimal spanning tree (MST) as well as eBURST. Measurement of clonality was assessed by the standardized index of association (IAS). Evidence of recombination was estimated by ClonalFrame as well as SplitsTree4.0. The MST analysis connected 70 sequence types, among which ST235 was by far the most common. ST235 was very frequently associated with the O11 serotype, and frequently displayed multi-resistance and the virulence genotype exoS−/exoU+. ClonalFrame linked several groups previously identified by eBURST and MST, and provided insight to the evolutionary events occurring in the population; the recombination/mutation ratio was found to be 8.4. A Neighbor-Net analysis based on the concatenated sequences revealed a complex network, providing evidence of frequent recombination. The index of association when all the strains were considered indicated a freely recombining population. P. aeruginosa isolates from the Mediterranean countries display an epidemic population structure, particularly dominated by ST235-O11, which has earlier also been coupled to the spread of ß-lactamases in many countries
    • …
    corecore