42 research outputs found

    Somatotrophic axis genes on growth traits in a bovine F2 population

    Get PDF
    O objetivo deste trabalho foi avaliar a associação dos polimorfismos dos genes bGH, IGF-1 e PIT-1 com características de peso e ganho de peso numa população F2 de bovinos (Gir x Holandês), pela técnica de PCR-RFLP. As freqüências alélicas A e B, do gene PIT-1, e dos genótipos AA, AB e BB, nas populações parentais foram semelhantes entre si, mas diferentes das freqüências nas populações cruzadas F1 e F2, para esse gene. Quanto ao gene bGH, os animais da raça Holandesa apresentaram freqüência de 100% para o alelo E e os animais da raça Gir, 92% para o alelo F, resultando em alta freqüência de indivíduos heterozigotos nas populações F1 e F2. Quanto ao gene IGF-1, todos os animais da raça Holandesa eram heterozigotos (AB) e, nos animais Gir, a maioria dos indivíduos foi de homozigotos (AA), o que resultou em alta freqüência do alelo A nas populações F1 e F2. Foram encontradas associações significativas do alelo A do gene PIT-1 com as características de peso aos 60, 205, 365 dias e ganho de peso do nascimento aos 60 dias. Em bGH, observou-se efeito significativo do alelo E para peso aos 365 dias e ganho de peso do nascimento aos 60 dias, enquanto o efeito do alelo A do IGF-1 foi significativo somente para peso ao nascimento. Os alelos identificados podem ser usados como marcadores no melhoramento animal.The objective of this work was to evaluate the association between polymorphisms of bGH, IGF-1 and PIT-1 genes with weight and weight gain traits in a bovine F2 population derived from Holstein x Gyr crosses, using the PCR-RFLP technique. Allelic frequencies A and B of PIT-1 gene and AA, AB, and BB genotypes were similar between parental populations but different from F1 and F2 crossed populations. For the bGH gene, Holstein animals showed allelic frequency of 100% for E allele, while Gyr animals showed allelic frequency of 92% for F allele, resulting in high frequency of heterozygous animals in F1 and F2 populations. For the IGF-1 gene, all Holstein were heterozygous (AB) and most Gyr were homozygous (AA), resulting in a high frequency of A allele in F1 and F2 populations. Significant associations were found between PIT-1 allele A with traits weight at 60, 205 and 365 days and weight gain from birth to 60 days. For IGF-1, significant association was found between A allele and birth weight. For bGH gene, significant associations were found between E allele and 365 days weight and weight gain from birth to 60 days. The selected alleles could be used as markers in animal breeding for these traits

    Allergen immunotherapy in MASK-air users in real-life : Results of a Bayesian mixed-effects model

    Get PDF
    Background Evidence regarding the effectiveness of allergen immunotherapy (AIT) on allergic rhinitis has been provided mostly by randomised controlled trials, with little data from real-life studies. Objective To compare the reported control of allergic rhinitis symptoms in three groups of users of the MASK-air(R) app: those receiving sublingual AIT (SLIT), those receiving subcutaneous AIT (SCIT), and those receiving no AIT. Methods We assessed the MASK-air(R) data of European users with self-reported grass pollen allergy, comparing the data reported by patients receiving SLIT, SCIT and no AIT. Outcome variables included the daily impact of allergy symptoms globally and on work (measured by visual analogue scales-VASs), and a combined symptom-medication score (CSMS). We applied Bayesian mixed-effects models, with clustering by patient, country and pollen season. Results We analysed a total of 42,756 days from 1,093 grass allergy patients, including 18,479 days of users under AIT. Compared to no AIT, SCIT was associated with similar VAS levels and CSMS. Compared to no AIT, SLIT-tablet was associated with lower values of VAS global allergy symptoms (average difference = 7.5 units out of 100; 95% credible interval [95%CrI] = -12.1;-2.8), lower VAS Work (average difference = 5.0; 95%CrI = -8.5;-1.5), and a lower CSMS (average difference = 3.7; 95%CrI = -9.3;2.2). When compared to SCIT, SLIT-tablet was associated with lower VAS global allergy symptoms (average difference = 10.2; 95%CrI = -17.2;-2.8), lower VAS Work (average difference = 7.8; 95%CrI = -15.1;0.2), and a lower CSMS (average difference = 9.3; 95%CrI = -18.5;0.2). Conclusion In patients with grass pollen allergy, SLIT-tablet, when compared to no AIT and to SCIT, is associated with lower reported symptom severity. Future longitudinal studies following internationally-harmonised standards for performing and reporting real-world data in AIT are needed to better understand its 'real-world' effectiveness.Peer reviewe

    Development and validation of combined symptom-medication scores for allergic rhinitis*

    Get PDF
    Background Validated combined symptom-medication scores (CSMSs) are needed to investigate the effects of allergic rhinitis treatments. This study aimed to use real-life data from the MASK-air(R) app to generate and validate hypothesis- and data-driven CSMSs. Methods We used MASK-air(R) data to assess the concurrent validity, test-retest reliability and responsiveness of one hypothesis-driven CSMS (modified CSMS: mCSMS), one mixed hypothesis- and data-driven score (mixed score), and several data-driven CSMSs. The latter were generated with MASK-air(R) data following cluster analysis and regression models or factor analysis. These CSMSs were compared with scales measuring (i) the impact of rhinitis on work productivity (visual analogue scale [VAS] of work of MASK-air(R), and Work Productivity and Activity Impairment: Allergy Specific [WPAI-AS]), (ii) quality-of-life (EQ-5D VAS) and (iii) control of allergic diseases (Control of Allergic Rhinitis and Asthma Test [CARAT]). Results We assessed 317,176 days of MASK-air(R) use from 17,780 users aged 16-90 years, in 25 countries. The mCSMS and the factor analyses-based CSMSs displayed poorer validity and responsiveness compared to the remaining CSMSs. The latter displayed moderate-to-strong correlations with the tested comparators, high test-retest reliability and moderate-to-large responsiveness. Among data-driven CSMSs, a better performance was observed for cluster analyses-based CSMSs. High accuracy (capacity of discriminating different levels of rhinitis control) was observed for the latter (AUC-ROC = 0.904) and for the mixed CSMS (AUC-ROC = 0.820). Conclusion The mixed CSMS and the cluster-based CSMSs presented medium-high validity, reliability and accuracy, rendering them as candidates for primary endpoints in future rhinitis trials.Peer reviewe

    Development and validation of combined symptom‐medication scores for allergic rhinitis*

    Get PDF
    Background: Validated combined symptom-medication scores (CSMSs) are needed to investigate the effects of allergic rhinitis treatments. This study aimed to use real-life data from the MASK-air® app to generate and validate hypothesis- and data-driven CSMSs. Methods: We used MASK-air® data to assess the concurrent validity, test-retest reliability and responsiveness of one hypothesis-driven CSMS (modified CSMS: mCSMS), one mixed hypothesis- and data-driven score (mixed score), and several data-driven CSMSs. The latter were generated with MASK-air® data following cluster analysis and regression models or factor analysis. These CSMSs were compared with scales measuring (i) the impact of rhinitis on work productivity (visual analogue scale [VAS] of work of MASK-air® , and Work Productivity and Activity Impairment: Allergy Specific [WPAI-AS]), (ii) quality-of-life (EQ-5D VAS) and (iii) control of allergic diseases (Control of Allergic Rhinitis and Asthma Test [CARAT]). Results: We assessed 317,176 days of MASK-air® use from 17,780 users aged 16-90 years, in 25 countries. The mCSMS and the factor analyses-based CSMSs displayed poorer validity and responsiveness compared to the remaining CSMSs. The latter displayed moderate-to-strong correlations with the tested comparators, high test-retest reliability and moderate-to-large responsiveness. Among data-driven CSMSs, a better performance was observed for cluster analyses-based CSMSs. High accuracy (capacity of discriminating different levels of rhinitis control) was observed for the latter (AUC-ROC = 0.904) and for the mixed CSMS (AUC-ROC = 0.820). Conclusion: The mixed CSMS and the cluster-based CSMSs presented medium-high validity, reliability and accuracy, rendering them as candidates for primary endpoints in future rhinitis trials

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore