22 research outputs found

    Silicon photonics devices for integrated analog signal processing and sampling

    Get PDF
    Silicon photonics offers the possibility of a reduction in size weight and power for many optical systems, and could open up the ability to build optical systems with complexities that would otherwise be impossible to achieve. Silicon photonics is an emerging technology that has already been inserted into commercial communication products. This technology has also been applied to analog signal processing applications. MIT Lincoln Laboratory in collaboration with groups at MIT has developed a toolkit of silicon photonic devices with a focus on the needs of analog systems. This toolkit includes low-loss waveguides, a high-speed modulator, ring resonator based filter bank, and all-silicon photodiodes. The components are integrated together for a hybrid photonic and electronic analog-to-digital converter. The development and performance of these devices will be discussed. Additionally, the linear performance of these devices, which is important for analog systems, is also investigated

    A one femtojoule athermal silicon modulator

    Get PDF
    Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength division multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters, and detectors) consume too much power for the femtojouleclass links that will ultimately be required. Here, we propose, demonstrate, and characterize the first modulator to achieve simultaneous high-speed (25-Gb/s), low voltage (0.5VPP) and efficient 1-fJ/bit error-free operation while maintaining athermal operation. Both the low energy and athermal operation were enabled by a record free-carrier accumulation/depletion response obtained in a vertical p-n junction device that at 250-pm/V (30-GHz/V) is up to ten times larger than prior demonstrations. Over a 7.5{\deg}C temperature range, the massive electro-optic response was used to compensate for thermal drift without increasing energy consumption and over a 10{\deg}C temperature range, increasing energy consumption by only 2-fJ/bit. The results represent a new paradigm in modulator development, one where thermal compensation is achieved electro-optically.Comment: 23 pages, 5 figure

    Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform

    Get PDF
    CLEO: Science and Innovations 2015 San Jose, California United States 10–15 May 2015 ISBN: 978-1-55752-968-8 From the session: Silicon Photonic Systems (SM2I)The final version is available from the publisher via the DOI in this record.Integrated components necessary for a mode-locked laser are demonstrated on a platform that allows for monolithic integration with active silicon photonics and CMOS circuitry. CW lasing and Q-switched mode-locking are observed in the full structures.This work was supported under the DARPA E-PHI project, grant no. HR0011-12-2-0007

    2022 Roadmap on integrated quantum photonics

    Get PDF
    AbstractIntegrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering

    Analog integrated photonics

    No full text
    Silicon photonics promises to revolutionize the field of optics by allowing for cheap, compact, low-power and low-noise optical systems on chip. In the past decade and a half, the basic functionality and acceptable performance of many individual integrated photonic components have been demonstrated, particularly in the digital regime. However, there are several challenges remaining before these advances can truly be exploited to create large-scale, commercial, analog integrated photonic systems. In this thesis, we address three of these challenges: (1) managing photonic layout and design of large-scale, complex systems jointly with CMOS driving circuitry, (2) integrating analog optical components in silicon, and (3) integrating photonic light sources in silicon. First, we present a comprehensive VerilogA modeling toolkit for the simulation of large, joint photonic plus CMOS systems as part of the creation of a full photonic process design kit (PDK) and demonstrate its use. Other smaller contributions to the PDK and process are also described. Next, we describe the development of two modulators meant for analog applications: an integrated, linearized Mach-Zehnder modulator and an integrated single-sideband modulator, both of which are measured to have impressive performance. Then, we discuss the development of an integrated mode-locked laser to serve as an on-chip light source for precision, low-noise optical applications. Finally, we describe preliminary work toward creating fully integrated analog systems, with the ultimate aim of demonstrating a compact, low-noise microwave oscillator

    Analog integrated photonics

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 183-197).Silicon photonics promises to revolutionize the field of optics by allowing for cheap, compact, low-power and low-noise optical systems on chip. In the past decade and a half, the basic functionality and acceptable performance of many individual integrated photonic components have been demonstrated, particularly in the digital regime. However, there are several challenges remaining before these advances can truly be exploited to create large-scale, commercial, analog integrated photonic systems. In this thesis, we address three of these challenges: (1) managing photonic layout and design of large-scale, complex systems jointly with CMOS driving circuitry, (2) integrating analog optical components in silicon, and (3) integrating photonic light sources in silicon. First, we present a comprehensive VerilogA modeling toolkit for the simulation of large, joint photonic plus CMOS systems as part of the creation of a full photonic process design kit (PDK) and demonstrate its use. Other smaller contributions to the PDK and process are also described. Next, we describe the development of two modulators meant for analog applications: an integrated, linearized Mach-Zehnder modulator and an integrated single-sideband modulator, both of which are measured to have impressive performance. Then, we discuss the development of an integrated mode-locked laser to serve as an on-chip light source for precision, low-noise optical applications. Finally, we describe preliminary work toward creating fully integrated analog systems, with the ultimate aim of demonstrating a compact, low-noise microwave oscillator.by Cheryl M. Sorace-Agaskar.Ph. D

    Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA

    No full text
    © 2015 Optical Society of America. We present a Cadence toolkit library written in VerilogA for simulation of electro-optical systems. We have identified and described a set of fundamental photonic components at the physical level such that characteristics of composite devices (e.g. ring modulators) are created organically - by simple instantiation of fundamental primitives. Both the amplitude and phase of optical signals as well as optical-electrical interactions are simulated. We show that the results match other simulations and analytic solutions that have previously been compared to theory for both simple devices, such as ring resonators, and more complicated devices and systems such as single-sideband modulators, WDM links and Pound Drever Hall Locking loops. We also illustrate the capability of such toolkit for co-simulation with electronic circuits, which is a key enabler of the electro-optic system development and verification

    Waveguide-Integrated Blue Light Detector

    No full text
    corecore