155 research outputs found

    Reviews on Solid Oxide Fuel Cell Technology

    Get PDF
    oai:www.engj.org:article/25Solid Oxide Fuel Cell (SOFC) is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants). This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect) are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design) are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming) are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP), SOFC with Gas Turbine (SOFC-GT)) and SOFC with chemical production) are given

    Preparation of Porous Anhydrous MgCl2 Particles by Spray Drying Process

    Get PDF
    Polyethylene (PE) is indispensable materials in daily lives. The catalyst is necessary to produce PE. Ziegler-Natta catalysts were mostly used to produce PE which consisted of MgCl2/TiCl4 system. Polyethylene particle was reported to replicate the shape of the catalyst particles or catalyst support particles. Therefore, the MgCl2 supports need to satisfy various requirements regarding particle morphology such as shape, particle size with uniform size distribution as well as the porosity. In this research, the preparation of MgCl2 particles from irregular shape of anhydrous MgCl2 by spray drying method was studied. However, because of the hygroscopic properties of anhydrous MgCl2, all steps of experiment in this work were operated under dry N2 atmosphere. The effect of type of alcohol, ethanol, n-propanol and n-butanol as solvent which was used to dissolve MgCl2 before feeding through the spray drying on the particle properties were investigated. The amount of residual alcohol (alcoholic hydroxyl group content), morphology, specific surface area, porosity and crystallinity were determined by GC method, scanning electron microscope (SEM), N2 sorption analyzer and X-ray diffraction (XRD), respectively. The results revealed that spray drying process can produce the porous anhydrous MgCl2 particles which have rough surface, higher porosity and lower crystallinity than original anhydrous MgCl2

    Mesoporous RF-Xerogels by Facile Hydrothermal Synthesis

    Get PDF
    Mesoporous resorcinol-formaldehyde (RF) xerogels were difficult to obtain by conventional sol-gel polymerization at atmospheric pressure because the resulting tenuous RF-gel structures tended to shrink or collapse during subsequent hot-air drying. To avoid this problem, costly and energy-intensive supercritical drying and freeze-drying are often used. In this work the main goal was to produce high-quality RF xerogels with good mesoporosity and high surface area by employing a hydrothermal process. The hydrogel synthesis was carried out in an autoclave at elevated temperature and pressure in order to sufficiently strengthen its network structure. The initial reactant ratio was held constant to search for most suitable hydrothermal temperature and initial pH. The experimental results showed that the reaction in the autoclave at 140ºC and initial pH of 6 could successfully produce RF xerogels with good mesoporosity (peaking pore radius rpeak = 2.38 nm), high specific surface area and large pore volume. The hydrothermal process was on the overall relatively simple, low-cost, and less time-consuming compared to the conventional atmospheric method

    Performance Assessment of SOFC Systems Integrated with Bio-Ethanol Production and Purification Processes

    Get PDF
    The overall electrical efficiencies of the integrated systems of solid oxide fuel cell (SOFC) and bio-ethanol production with purification processes at different heat integration levels were investigated. The simulation studies were based on the condition with zero net energy. It was found that the most suitable operating voltage is between 0.7 and 0.85 V and the operating temperature is in the range from 973 to 1173 K. For the effect of percent ethanol recovery, the optimum percent ethanol recovery is at 95%. The most efficient case is the system with full heat integration between SOFC and bio-ethanol production and purification processes with biogas reformed for producing extra hydrogen feed for SOFC which has the overall electrical efficiency of 36.17%. However more equipment such as reformer and heat exchangers are required and this leads to increased investment cost

    Entrapment of a volatile lipophilic aroma compound (D-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus)

    Get PDF
    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (theflavour compound D-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and D-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and D-limonene retention was 89–93% and 24–27%. Samples were compared to processed emulsions containing sunflower oil and D-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and D-limonene retention of 82–89%, 7.7–9.1% and 48–50%, 55–59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most D-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation

    Cryogels: Morphological, structural and adsorption characterisation

    Full text link
    corecore