349 research outputs found

    Wind turbine SCADA alarm pattern recognition

    Get PDF
    Current wind turbine (WT) studies focus on improving their reliability and reducing the cost of energy, particularly when they are operated offshore. WT Supervisory Control and Data Acquisition (SCADA) systems contain alarm signals providing significant important information. Pattern recognition embodies a set of promising techniques for intelligently processing WT SCADA alarms. This paper presents the feasibility study of SCADA alarm processing and diagnosis method using an artificial neural network (ANN). The back-propagation network (BPN) algorithm was used to supervise a three layers network to identify a WT pitch system fault, known to be of high importance, from pitch system alarm. The trained ANN was then applied on another 4 WTs to find similar pitch system faults. Based on this study, we have found the general mapping capability of the ANN help to identify those most likely WT faults from SCADA alarm signals, but a wide range of representative alarm patterns are necessary for supervisory training

    Bayesian Network for Wind Turbine Fault Diagnosis

    Get PDF
    Wind turbine reliability studies have become more important because good wind turbine reliability with predictable turbine maintenance schedule will reduce the cost of energy and determine the success of a wind farm project. Previous research on wind turbine SCADA system has made progress in this respect. However, SCADA data volume is usually too huge and alarm information is too unclear to indicate failure root causes. In addition, SCADA signals and alarms are not currently interpreted as a whole. This highlights the need for more intelligent methods which can use existing SCADA data to automatically provide accurate WT failure diagnosis. This paper presents a new approach, based on Bayesian Network, to describe the relationship between wind turbine failure root causes and symptoms. The Bayesian Network model was derived from an existing probability-based analysis method – the Venn diagram, and based upon 26 months of historical SCADA data. The Bayesian Network reasoning results have shown that the Bayesian Network is a valuable tool for WT fault diagnosis and has great potential to rationalise failure root causes

    Boty-II, a novel LTR retrotransposon in Botrytis cinerea B05.10 revealed by genomic sequence

    Get PDF
    Botrytis cinerea is a necrotrophic pathogen causing pre- and post-harvest diseases in at least 235 plant species. It manifests extraordinary genotype and phenotype variation. One of the causes of this variation is transposable elements. Two transposable elements have been discovered in this fungus, the retrotransposon (Boty), and the transposon (Flipper). In this work, two complete (Boty-II-76 and Boty-II-103) and two partial (Boty-II-95 and Boty-II-141) long terminal repeat (LTR) retrotransposons were identified by an in silico genomic sequence analysis. Boty-II-76 and Boty-II-103 contain 6439 bp nucleotides with a pair of LTRs at both ends, and an internal deduced pol gene encoding a polyprotein with reverse transcriptase and DDE integrase domains. They are flanked by 5 bp direct repeats (ACCAT, CTTTC). In Boty-II-141, two LTRs at both ends, and a partial internal pol gene encoding a protein with a DDE integrase domain were identified. In Boty-II-95, a right LTR and a partial internal pol gene encoding a protein with no conserved domains were identified. Boty-II uses a self-priming mechanism to initiate synthesis of reverse transcripts. The sequence of the presumed primer binding site for first-strand reverse transcription is 5'-TTGTACCAT-3'. The polypurine-rich sequence for plus-strand DNA synthesis is 5'-GCCTTGAGCGGGGGGTAC-3'. Fourteen Boty-II LTRs that contain 125-158 bp nucleotides and share 69.1 ~ 100% identities with the short inverted terminal repeats of 5 bp (TGTCA\u2026TGACA) were discovered. Analysis of structural features and phylogeny revealed that Boty-II is a novel LTR retrotransposon. It could potentially be used as a novel molecular marker for the investigation of genetic variation in B. cinerea

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670 mW670\,\mathrm{mW} output power at 671 nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/2→4I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented

    Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    Get PDF
    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory

    Full text link
    We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines. The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease. These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced pedestal profile to refill. An increase in fELMSMBI/fELM0 and a decrease in the energy loss per ELM ΔWELM were achieved in both machines. Physical insight was gleaned from studies of density and vΊ (toroidal rotation velocity) evolution, particle flux and turbulence spectra, divertor heat load. The characteristic gradients of the pedestal density soften and a change in vΊ was observed during a τI time. The spectra of the edge particle flux Γ ∌ 〈áčœrñe〉 and density fluctuation with and without SMBI were measured in HL-2A and in KSTAR, respectively. A clear phenomenon observed is the decrease in divertor heat load during the τI time in HL-2A. Similar results are the profiles of saturation current density Jsat with and without SMBI in KSTAR. We note that τI/τp (particle confinement time) is close to ∌1, although there is a large difference in individual τI between the two machines. This suggests that τI is strongly related to particle-transport events. Experiments and analysis of a simple phenomenological model support the important conclusion that ELM mitigation by SMBI results from an increase in higher frequency fluctuations and transport events in the pedestal. © 2014 IAEA, Vienna
    • 

    corecore