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Abstract 

Wind turbine reliability studies have become 

more important because good wind turbine 

reliability with predictable turbine maintenance 

schedule will reduce the cost of energy and 

determine the success of a wind farm project. 

Previous research on wind turbine SCADA 

system has made progress in this respect. 

However, SCADA data volume is usually too 

huge and alarm information is too unclear to 

indicate failure root causes. In addition, SCADA 

signals and alarms are not currently interpreted 

as a whole. This highlights the need for more 

intelligent methods which can use existing 

SCADA data to automatically provide accurate 

WT failure diagnosis. This paper presents a 

new approach, based on Bayesian Network, to 

describe the relationship between wind turbine 

failure root causes and symptoms. The 

Bayesian Network model was derived from an 

existing probability-based analysis method – 

the Venn diagram, and based upon 26 months 

of historical SCADA data. The Bayesian 

Network reasoning results have shown that the 

Bayesian Network is a valuable tool for WT 

fault diagnosis and has great potential to 

rationalise failure root causes.  

Keywords: Wind Turbine, Bayesian Network, 

SCADA, Fault Diagnosis. 

1 Introduction 

Wind turbine (WT) downtime and Operation & 

Maintenance (O&M) costs constitute a sizable 

share of the annual cost of a wind farm (WF) 

[1]. With the increase of wind energy 

development, especially the rapidly growing 

number of offshore WFs, research regarding 

WT reliability is becoming significant and critical 

[2].  

The essence of improving the reliability of WT 

is to reduce the downtime and increase its 

availability by optimizing both the WT design 

and the maintenance schedule. Both of these 

strategies require a full understanding of the 

WT system and a detailed analysis of it failure 

mechanisms. WT monitoring systems provide a 

rich resource of data to achieve this as they 

archive comprehensive historical signal & alarm 

information, with detailed fault logs and 

environmental & operational conditions [3, 4, 5]. 

A WT’s systematic performance can be 

monitored through a proper analysis of the 

information collected by those monitoring 

systems which cover all the major WT sub-

assemblies. Initial attempts to use WT 

monitoring data, including Supervisory Control 

and Data Acquisition (SCADA) and Condition 

Monitoring systems (CMS) to detect WT failure 

have been made [6, 7]. This paper is a further 

study of Venn diagram analysis from [8], which 

focuses on using Bayesian Networks (BN) to 

analyse SCADA data and proves its feasibility 

on WT fault diagnosis. 

2 SCADA System 

WTs are monitored for a variety of reasons with 

different systems offering different analysis 

methods and possibilities for fault detection. 

Among them, SCADA system is a standard 



 
 

installation on large WTs and wind farms, their 

data being collected from individual WT 

controllers. According to [3] the SCADA system 

assesses the status of the WT and its sub-

assemblies using sensors fitted to the WT, 

such as anemometers, thermocouples and 

switches. The signals from these instruments 

are monitored and recorded at a low data rate, 

usually at 5 or 10 minute intervals.  

SCADA system contains signals and alarms 

and has been widely researched over the last 

decade [3, 6]. Some recent studies include 

signal-based analysis approaches for WT 

gearbox and generator [9], a system called 

SIMAP based on artificial neural network aimed 

to detect and diagnose gearbox failures [10], a 

probability analysis of pitch performance curves 

for identifying faults in pitch system [11], an 

automated analysis system also based on 

artificial neural network [3], time-sequence and 

probability based analysis method to rationalise 

and reduce SCADA alarm data [8], and a 

pattern recognition approach for identifying 

faults in WT pitch system [12].   

From above literature, it can be seen that the 

SCADA data volume is usually too huge and 

alarm information is too unclear to indicate 

failure root cause. In addition, SCADA signals 

and alarms are not interpreted as a whole. This 

highlights the need for more intelligent methods 

that can use existing SCADA data to 

automatically provide accurate WT failure 

diagnosis.   

This paper presents a new approach, based on 

BN, to describe the relationship between WT 

failure root causes and symptoms. The BN 

model was derived from the Venn diagram of 

[8]. Both SCADA signals and alarms are used 

to prove the great potential to rationalise failure 

root causes. 

3 Bayesian Networks 

BN are directed acyclic graph models for 

describing the relationships between causes 

and effects [13]. The model consists of nodes 

and arcs as shown in Figure 1. The nodes 

represent variables and the arcs express the 

probability dependences between the linked 

variables. In addition, each node in BN has an 

associated priori probability table - Node 

Probability Table (NPT) [13]. 

3.1 Constructing Bayesian Network 

The structure or topology of the BN should 

capture qualitative relationships between 

variables. In particular, two nodes should be 

connected directly if one affects or causes the 

other, with the arc indicating the direction of the 

effect. So, in our WT example, we might ask 

what factors affect a turbine’s chance of stop? 

If the answer is “Low Wind” and “Maintenance” 

then we should add arcs from “Low Wind” and 

“Maintenance” to “Turbine Stop”. Similarly, 

having turbine stop will affect the power output 

and the changes of nacelle temperature. So we 

add arcs from “Turbine Stop” to “Power Output” 

and “Nacelle Temperature”. The resultant is 

shown in Figure 1(a).  It is important to note 

that this is just one possible structure for the 

problem; the alternative network structure is 

shown in Figure 1(b) [13]. 

Maintenance Low Wind

Turbine Stop

Power Output
Nacelle 

Temperature

(a) (b)

Maintenance Low Wind

Turbine Stop

Power Output
Nacelle 

Temperature

 

Figure 1: Two different BN models for WT case study 
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Figure 2: BN with node probability table 

3.2 Bayesian Network Learning 

The BN learning is done by specifying 

connectional probability distribution for each 

node, the NPT [13].  

For each node, we need to look at all the 

possible combination of values of those parent 

nodes. Each such combination is called an 

instantiation of the parent set. For each distinct 

instantiation of parent node values, we need to 

specify the probability that the child will take 

each of its values.  

For example, consider the “Turbine Stop” node 

of Figure 1 (a). Its parents are “Maintenance” 

and “Low Wind” and take the possible joint 

value                           . 

The conditional probability table specifies in 

order the probability of Turbine stop for each of 

these cases are:                      . Since 

these are probabilities, and must sum to one 

over all possible states of the “Turbine Stop” 

variable, the probability of turbine running is 

already implicitly given as one minus the above 

probabilities in each case; therefore, the 

probability of turbine running in the four 

possible parent instantiations are            

          , as shown in Figure 2.  

Root nodes also have an associated NPT, 

although it contains only one value 

representing its prior probabilities. In our 

example, the prior for a turbine under 

maintenance is given as 0.3, indicating that 

30% of population that the turbine sees are 

under maintenance.  

Clearly, if a node has many parents or if the 

parents can take a large number of values, the 

NPT can get very large. In fact, the size of the 

NPT is exponential growth with the increase of 

parent node numbers [13]. 

3.2 Maths behind Bayesian Networks 

BN are considered to be representations of 

joint probability distribution with the introduction 

of the independence assumption [13]. 

Consider a BN containing   nodes,    to   . A 

particular value in the joint distribution is 

represented by                     

   , or more compactly,              . The 

chain rule of probability theory allows us to 

factorise joint probabilities so: 

 

                              

                

                 

 

        

The structure of a BN implies that the value of a 

particular node is conditional only on the values 

of its parent nodes, thus the equation (1) is 

reduced to: 

 

                                

 

         

where                           denotes the 

set of parent of   . For example, by exampling 

Figure 2, we can simplify its joint probability 

expressions like below: 

 

                                
                                 
                                     
                         
                     
                 



 
 

                   
                       
                         
                 
                 

3.3 Reasoning with Bayesian 

Network 

The key feature of BN is that they enable us to 

model and reason about uncertainty. The BN 

forces the assessor to expose all assumptions 

about the impact of different forms of evidence 

and hence provides a visible auditable 

dependability.  

The BN reasoning is a simple step of 

calculating new belief when new information, 

which is called evidence, is available. Suppose 

we want to know the probability of Turbine is 

stop, given evidences                    , 

                  ,                 and 

            . Then, according to Bayes 

Theorem, the question can be expressed as: 

                              

    
                          

                      
 

    
                          

                              
 

 

After that, by using equation (2) and entering 

value from BN NPT, we can easily get the 

result. 

The uses of BN have been increasing in many 

domain problems and in many kinds of 

application, including but not limited to 

diagnosis problem and fault detection [14]. 

4 Implementation of Bayesian 

Network 

4.1 Bayesian Network Model 

A study using SCADA data to detect and locate 

faults in a 2MW variable speed WT’s electrical 

pitch system is presented. The BN model was 

derived from results of a Venn diagram 

probability-based analysis [8] and based upon 

26 months of historical SCADA data. 3 SCADA 

signals and 5 SCADA alarms were used in this 

study as shown in Table 1. 

Name Type Sampling 
Rate 

Description 

Power Output (Avg)  
Signal 

 
10 minutes 

Average power output in the past 10 minutes. 

Blade 1 Motor Torque 
(Max) 

Maximum blade 1 motor torque in the past 10 
minutes. 

Blade 1 Angle (Avg) Average blade 1 angle in the past 10 minutes. 

Blade 1 Emergency  
 
Alarm 

 
 
1 second 

Due to a fault, blade 1 feathers its angle of 
attack to 86º for a stop. 

PCP EFC PCP has initiated emergency feather control. 

SPA Fault in Blade 1 This alarm occurs due to a blade specific 
servo power amplifier fault. 

Short Circuit Blade 1 This alarm occurs due to power interruption 
caused to the blade 1’s inverter. 

Motor 1 Saturation Limit This alarm occurs due to motor over-current. 

Table 1: SCADA data used in this study 
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Figure 2: BN model for WT pitch system

Figure 2 shows the derived BN model for a WT 

pitch system representing a knowledge 

structure that models the relationship between 

WT Status, Pitch Faults and Measured Sensor 

Outputs. 

4.2 Data Preparation 

The original SCADA data in Table 1 is required 

to be processed to resolve the following 

problems: 

 Representation: Signals are 

continuous data and are difficult to 

represent WT running status; 

 Inconsistency: Signals and alarms 

have different sampling rate; 

Therefore, Signal Variance (   ) and Alarm 

Presence Length (  ) are introduced. The    is 

defined as: 

                    

where    denotes the Signal Variance at time  . 

    and      represent the original SCADA 

signal data at time   and     respectively. 

Where    denotes the Alarm Presence Length 

in seconds from time     to  , defined as: 

                   

  is a function used to calculate the amount of 

time in seconds. Equation (4) will update Alarm 

sampling rate from 1 second to 10 minutes to 

make it consistent with the SCADA signal. 

After that, indicator functions are introduced to 

represent SCADA data in different data range, 

defined as: 

        

                                                
                                     
                                             

          

        

                                                  
                                        
                                                 

         

       

                                                                
                                                     
                                                                   

        

where equation (5) is for Power Output and 

equation (6) is for Blade 1 Motor Torque and 

Blade 1 Angle. Equation (7) is applied on all 

alarms. 

4.3 Training Bayesian Network 

A WT’s 26 months SCADA data was used to 

train the BN and obtain corresponding 

probabilistic dependencies. The trained result is 

shown in Figure 3, named the BN with the 

given priori probability. 



 
 

 

Figure 3: Trained BN with the given priori probability (Note: Data from healthy condition has been 

filtered as they occupied most of the training data) 

(a) (b)

(d) (e) (f)

(c)

 

Figure 4: (a) The Venn diagram result from [8], (b)-(f) the BN reasoning with different given 

evidence(s) (The given evidences are highlighted by filling red colour).

4.4 BN Reasoning 

BN are a way of describing complex 

probabilistic reasoning. By giving user knows 

posterior probabilities (also known as 

evidences), the network is able to infer the 

probabilities of other events, which haven’t as 

yet been observed. Some BN reasoning tests, 

with the given evidences, are shown in Figure 4 

and Figure 5; the corresponding inference 

results are highlighted in red circle. 



 
 

The probability-based analysis result from [9] is 

shown in Figure 4 (a). This result indicated 

Blade Short Circuit was the root cause of the 

pitch system failure on this occasion. Figure 4 

(b)-(f) show the derived BN model used for 

reasoning with the given evidence(s). Figure 4 

(b) shows the BN reasoning with the given 

evidence of serious PCP EFC. By comparing 

this inference results with the initial trained BN 

in Figure 3, we could find that the probability of 

SPA Fault, Motor Saturation Limit and Blade 

Short Circuit have been increased. Also, in this 

situation, in order to initialise the blade 

emergency feather control, Blade Motor Torque 

is required to increase Blade Angle and result 

in decreasing Power Output, as shown in 

Figure 4 (b) and highlighted in red circle.  

Figure 4 (c) shows the evidence of serious 

Blade Emergency was added into the BN 

model. By comparing this result with previous 

one, we found the new result has got the 

increased probabilities (As highlighted in red 

circle). This could be explained as the PCP has 

initialised the emergency control and the blade 

had also feathered its angle of attack for a stop, 

consequently, the probability of pitch fault is 

increased and corresponding measured 

outputs are changed to indicate the WT running 

status.   

The evidence of decreasing Power Output was 

added in Figure 4 (d) and the result shows a 

greater fault probability. This is quite easy to 

understand as blade feathers its angle of attack 

for a stop will definitely result in decreasing 

Power Output. On the contrary, the added 

evidence of decreasing Power Output will lead 

to a corresponding increase in event 

probability. Figure 4 (e) and (f) show the BN 

reasoning with adding the evidence of 

increasing Motor Torque and Blade Angle 

respectively. Their inference results show the 

gradual increase in the change of the events’ 

probabilities.  

Through analysing the results from Figure 4 (b) 

to (f), we found the BN reasoning exactly infer 

the probabilities of the other events. By simply 

inputting the current WT’s running status as 

evidence, this model can be applied online to 

diagnose WT faults. 

Another three BN reasoning tests are shown in 

Figure 5 to represent a WT with and without 

pitch faults. 

 

(a) (b) (c)  

Figure 5: (a) A WT with pitch fault, (b) and (c) A WT without pitch fault. 

Figure 5 (a) shows the BN reasoning with the 

given evidence of serious Blade Short Circuit. 

According to this result, we found that a WT 

with Blade Short Circuit will certainly have the 

occurrence of PCP EFC, SPA Fault and Blade 

Emergency. It will also have a large probability 

of Motor Saturation Limit. And in this situation, 

the WT will require big Blade Motor Torque to 

increase the Blade Angle and result in 

decreasing Power Output. Above BN 

inferences clearly reflects the preventive 

actions when a pitch fault occurred and it also 

proved the result of the probability-based 

analysis [8], as shown in Figure 4 (a). 



 
 

Figure 5 (b) shows the BN reasoning with the 

given evidence of no PCP EFC and increasing 

Power Output.  The BN reasoning results show 

no fault and the WT is running under good 

condition. Figure 5 (c) shows the similar results 

when BN is given the evidence of no PCP EFC 

and constant Power Output. 

5 Discussion 

In this work, the BN model was derived from 

results of a Venn diagram probability-based 

analysis [8] and based upon 26 months of 

historical SCADA data. The trained BN has 

shown its feasibility to reason root causes in 

the presence of uncertainty. Comparing to the 

Venn diagram approach, the BN has the 

following advantages: 

 Better rationalisation of the data: 

This is because in BN models, there is 

a relationship between cause and 

effect; 

 More feasible for online fault 

diagnosis: By inputting the current WT 

running status as evidence(s), the BN 

will be able to infer the probability of 

other events, E.g. a fault probability; 

A drawback of using BN found from this work 

was that the BN complexity grows exponentially 

with the increase of parent node numbers. In 

addition, the size of training data is critical to 

the success of BN reasoning. So for better 

performance, large numbers of training data 

covering a wider range of representative 

symptoms are needed to assure BN 

performance. 

6 Conclusion 

In conclusion, this study of the suitability of BN 

for the diagnosis of WT pitch system faults has 

demonstrated that it is a valid technique for 

automatic WT fault root cause detection.  

The results show that the BN approach has the 

potential to reduce WT O&M cost by making 

accurate detection, diagnosis and prognosis. 
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