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Abstract 

Current wind turbine (WT) studies focus on improving their 

reliability and reducing the cost of energy, particularly when 

they are operated offshore. WT Supervisory Control and Data 

Acquisition (SCADA) systems contain alarm signals 

providing significant important information. Pattern 

recognition embodies a set of promising techniques for 

intelligently processing WT SCADA alarms. This paper 

presents the feasibility study of SCADA alarm processing and 

diagnosis method using an artificial neural network (ANN). 

The back-propagation network (BPN) algorithm was used to 

supervise a three layers network to identify a WT pitch 

system fault, known to be of high importance, from pitch 

system alarm. The trained ANN was then applied on another 

4 WTs to find similar pitch system faults. Based on this study, 

we have found the general mapping capability of the ANN 

help to identify those most likely WT faults from SCADA 

alarm signals, but a wide range of representative alarm 

patterns are necessary for supervisory training.  

1 Introduction 

Current studies of wind turbines focus on improving 

reliability [4,9,10] because good wind turbine reliability, 

together with predictable turbine maintenance schedule, will 

result in a reduced cost of energy, which will determine the 

success of a wind farm project. This is even more important 

for offshore wind farms due to their high initial capital cost 

and limited accessibility, causing higher operational and 

maintenance (O&M) cost [11,14] and prolonged capital 

payback. 

 

The essence of improving the reliability of wind turbine is to 

reduce the downtime and increase its availability by 

optimizing both the wind turbine design and the maintenance 

schedule. Both of these strategies require a full understanding 

of the wind turbine system and a detailed analysis of its 

failure mechanisms. WT SCADA systems provide a rich 

resource to achieve this capability as it archives 

comprehensive signal information, historical alarms and 

detailed fault logs, as well as environmental and operational 

conditions [1,2,6,8]. A wind turbine’s systematic performance 

can be monitored through a proper analysis of the information 

collected by the SCADA system which covers all the major 

WT sub-assemblies. Initial attempts to use SCADA alarms to 

detect wind turbine failure are made recently [15,17]. This 

paper focuses on using pattern recognition to analyse SCADA 

alarm and proves its feasibility on wind turbine fault 

diagnosis, concentrating particularly on a WT electric pitch 

system, which are known to be fault prone and which produce 

a significant number of SCADA alarms [17].  

2 SCADA Alarms 

For a wind turbine, many individual systems are installed to 

monitor its running situation which includes SCADA and 

Condition Monitoring (CMS) systems. CMS is designed to 

detect the incipient failure of WT components [5] with higher 

frequency bandwidth than SCADA, > 10 kHz, and higher 

costs per channel and it usually monitors the main drive chain 

area. The SCADA signal bandwidth is low, 10 minutes 

samples, and data storage requirement is less than CMS. 

Alarm information is stored and annunciated by the SCADA 

system. Typically, alarms are used to indicate the need for 

operator’s emergency action to protect a WT from running 

into a risky condition. Whenever the WT malfunctions, 

associated alarms will be triggered. 

 

A recent study from [17] has investigated the Key 

Performance Indicators (KPI) of alarms from 4 onshore, 30-

40 WTs wind farm. The results show that an average alarm 

rate varying from 4-20 per 10 minutes and maximum alarm 

rate varying from 390-1,500 per 10 minutes. These are very 

high figures from relatively small onshore wind farms and the 

alarm rate would need to be reduced to be interpretable by 

operators or maintainers. In 2011 [15] introduced time-

sequence and probability-based analysis method to analyse 

SCADA alarm data. These two methods have proved to be 

potential for rationalising and reducing alarm data providing 

fault detection, diagnosis and prognosis from the conditions 

generating the alarms. 

 

This paper proposes a novel method which is based on 

artificial neural network to realize WT failure diagnostic.  

From system engineering point of view, the alarm generation 

due to a fault can be described as: 

                                   (1) 

which means fault   generates the alarm pattern  . The task 

of diagnosing alarms can be considered as the inversion of the 

alarm generation task: 

                                   (2) 

where   is the incoming alarm pattern, which may be 

unknown and   is the system fault most likely to have 

occurred. Therefore, alarm diagnosis using ANN is intended 

to identify the most likely alarm pattern from incoming 

alarms patterns and use it for diagnosis.  

mailto:bindi.chen@dur.ac.uk


 

3 Artificial Neural Networks 

An ANN is a computational model made up of many 

processing neurons that has a natural propensity for storing 

experiential knowledge and making it available for use [12]. 

Typically, the structure of an ANN consists of three layers, as 

shown in Figure 1. The first layer consists of input nodes, 

which are connected to the neurons of a hidden layer. The 

hidden neurons are connected to the neurons of the third or 

output layer.  
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Figure 1: A        feed-forward ANN. 

 

The knowledge of training data is stored in the connection 

strengths, known as weights, between the processing elements 

from layer to layer during the training process [12]. The 

network is trained in accordance with a training algorithm, 

which governs how connection weights are modified and 

adjusted in response to the training data feed into the input 

nodes and the desired outputs at the output neurons. In the 

recall process, the trained ANN accepts inputs presented at 

the input nodes and then produces a response at the output 

layer [13]. 

 

Generally, the relation of a three layer (      ) feed-

forward ANN can be represented in vector notations [15]. If   

is a   dimensional column vector presenting inputs and   is a 

  dimensional column vector representing the results of 

hidden layer, then: 

                                            (3) 

where    is a     weight matrix assigned to the 

connection between the input and hidden layers, and    is an 

activation function using a sigmoid function, as follows: 

                                 
 

            (4) 

This function has the ability to produce continuous non-linear 

threshold function and transforms inputs between    and 

   into real numbers between   and   [7]. Similarly, the   

dimensional column vector for the output layer can be 

represented as follows: 

                                            (5) 

where   is another activation function using a sigmoid 

function as shown in (4), and   is a     weight matrix for 

the connection between the hidden and output layer. As we 

can see from (5), the calculations of the output of the ANN 

involve two weight matrix multiplications and two 

applications of the activation function. Therefore, the use of 

this ANN will require some computational overhead. 

3.1 Back-propagation network Training Algorithm 

A back-propagation network (BPN) training algorithm is a 

common method for teaching feed-forward ANNs how to 

perform a given task [16]. This algorithm adopts a training 

rule called the Generalized Delta Rule (GDR), which follows 

an iterative gradient descent algorithm designed to minimize 

the overall mean square error  , defined as: 

                           
 

  
         

          (6) 

where   denote the number of training pattern presented to 

the input layer.    represents the desired output of the  th 

input pattern and    is the actual output of the same input 

pattern (Note: Both of    and    are vectors). The update of 

ANN weight is calculated by using the following equation: 

                                            (7) 

where   denotes the presentation step,   is the training rate 

and   is the momentum coefficient. By introducing the 

training rate and momentum coefficient, training speed can be 

increased without oscillation [13]. The error signal   at the 

 th neuron is determined as follows: 

                            

    
           

     
    

     
                 

                              
     (8) 

 

where    is the desired output of the  th neuron,    is the 

output of the connected neuron,     means the next layer – 

the output layer. 

 

Using this algorithm, the ANN is trained by initialising small 

random weights and then presenting all training patterns 

repeatedly. Weights are modified and adjusted after every 

presentation step, by propagating error signals from neurons 

in the output layer to neurons in the hidden layer and nodes in 

the input layer. Finally, if the error   in (6) is less than a 

specific minimum value, training can be terminated and the 

ANN is ready for use [14, 16]. 

4 Construction of ANN 

4.1 Get training data – Pitch System fault 

 



 

Figure 2: Wind turbine pitch motor (In blue) 

 

As shown in Figure 2, the modern 3-bladed WT has a pitch 

motor in each blade to control the blade angle, extract 

optimum power from the wind and avoid rotor overspeed. As 

the rotor speed increases, the blade pitch angle increases to 

control WT toque. In a WT without any pitch faults, three 

pitch motor torques should be identical. Any detectable large 

torque difference between blade pitch motors can be caused 

by a possible pitch system fault. In order to get training data 

for the ANN, 3 criteria were defined to identify pitch system 

faults and then use them to obtain corresponding alarm 

patterns. The 3 cirteria are listed below and an example is 

shown in Figure 3 with the relevant SCADA signal 

descriptions listed in Table 1.  

 

 Identification of a monitoring period; 

 Significant pitch motor torque difference during this 

period; 

 No significant change in wind speed during this 

period. 

 It has maintenance records during this period. 

 

1. Irregular Pitch Motor torque difference

2. No significant change in Wind Speed

3. Maintenance records

 
 

Figure 3: Criteria to identify a pitch system fault (Vertical axis is the value of different SCADA signals; Horizontal axis 

is the date time) 

 

SCADA Signals Description (Over the past 10 minutes) 

AveWind 

MaxWind 

MotorTorque1Max 

MotorTorque2Max 

MotorTorque_Difference 

The average wind speed 

The maximum wind speed 

The maximum pitch motor torque in blade 1 

The maximum pitch motor torque in blade 2 

Pitch motor torque difference between blade 1 and blade 2 

 

Table 1: The corresponding SCADA signals description in Figure 3. 

 

Subject to above requirements, the corresponding alarm 

pattern were found and shown in Figure 4. The alarm fault 

behaviours can be transformed into an alarm matrix, which is 

obtained by putting the data for each fault into an alarm input 

vector as follows: 

                                       
       

where   can be considered to characterize pitch system fault 

and   takes one of the values 0 and 1; both indicate the on 

and off state of the relevant alarm. These alarm patterns 

represent pitch system faults whereas the reminders represent 

no pitch system fault.  

 

By analysing a WT X with pitch problem over a period of 26 

months, we found: 

 

 31 alarms are associated with this pitch system fault; 

 5,760 alarm triggering frequency associated with this 

pitch system fault; 

 221 different alarm patterns; 

 Among these 221 alarm patterns: 

o 15 alarm patterns are associated with this 

pitch system fault. 

o 206 alarm patterns are not associated with 

this pitch system fault. 



 

 

Then, using:  

 

 “1 0” to represent the desired output of this pitch 

system fault; 

 “0 1” to stand for the desired output of no this pitch 

system fault;  

 

The 221 input/output pairs of training data were transformed 

and listed in Table 2.   

 

 

Alarm Pattern

 
 

Figure 4: Corresponding alarm signals from WT X from Figure 3.

 

 Alarm Pattern (Inputs – 31 alarms) Desired Output Description 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 Pitch System 

fault 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 

…… 1 0 

15 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

16 

- 

221 

Other 206 alarm patterns 0 1 No Pitch 

System fault 

 

Table 2: Training data 

4.2 ANN Model 

In the ANN implementation, an input layer consist of 31 

alarm inputs, a hidden layer consists of   neurons and an 

output layer consists of 2 fault identification neurons, as 

shown in Figure 5 is constructed. In addition, in order to 

control the behaviour of the ANN layers and improve the 

accuracy of the ANN output, a special processing element 

called bias with a constant input +1 is attached to all of the 

neurons in hidden and output layers. This network model 

represents the mapping from alarm pattern space to a fault 

space. 
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Figure 5: Implemented ANN model 



 

4.3 Training the ANN 

The training process of the ANN is shown in Figure 6. During 

the training, an alarm input vector was fed into the input layer 

of the ANN and the desired output corresponding to input 

vector was used to compare with the actual ANN output. If 

the result of the comparison was unacceptable, the BPN 

training algorithm adjusted the weights to be consistent with 

the imposed input vector and desired output. The weights 

were then readjusted to accommodate new input vector with 

the corresponding desired output. The training process is 

repeated until the overall mean square error   in (6) was less 

than a specific minimum value. In this work, the minimum 

value was set to 0.0001 to achieve adequate network 

performance [13]. 

 

SCADA 

Alarm data

 Input

Vector 

Neural Network

 Actual 

Output 

 Desired Output 

 unacceptable
BPN

Training Algorithm

 Acceptable 

Updating 

Weight

 
 

Figure 6: Training process 

 

The training was performed on a Server with 2 processors, 

48G memory and 8TB hard drive and using C# programming 

language. The weight and biases were randomly initialised 

from -1 to 1 at the beginning, and then updated after every 

training cycle using (7). Based on [7], the training rate   and 

the momentum coefficient   were set to 0.7 and 0.9, 

respectively. 

5 Results and Discussion 

By choosing different number of neuron   in the hidden layer, 

as shown in Figure 5, 3 different ANN models were 

constructed. They were         ,         and     
    . The time to achieve the mean square error to 0.0001 

is shown in Table 3. In this work, the optimum number of 

hidden layer neurons was 50. 

 

NN Model No. of training cycles 

        110 

        105 

        142 

 

Table 3: Training cycles to achieve mean square error to 

0.0001. 

 

After the network has been fully trained, fault diagnosis was 

simply a matter of presenting a new alarm input vector data to 

the input layer of the trained ANN and calculating the ANN 

output. In other words, a fault can be identified when the 

ANN output is close to “1 0”, for example “0.9983 0”. 

 

In order to demonstrate the feasibility of the proposed ANN, 

the trained ANN was applied in a test to another 4 WTs to 

identify similar pitch system faults found in Table 2. The 

intention was to determine:  

 

a) Can a defective pitch mechanism be detected by the 

ANN; 

b) How many hidden layers give the best result; 

 

The data about pitch faults was contained in a Maintenance 

Log and the above test used the results from that Maintenance 

Log to determine whether the trained ANN was giving 

effective results on the 4 WTs. 

 

The results are summarised in Table 4 where   was the 

number of pitch events in the Maintenance Log,   was the 

number of incidents events identified by the ANN,   was the 

number of pitch events correctly predicted by ANN, checked 

by pitch significance and date in the Maintenance Log. 

 

WTs 

  

Number of Hidden Neurons (   ) 

30 50 70 

a b d d/b b d d/b b d d/b 

X 

(train
ed) 102                   

A 53 33 15 45% 32 15 47% 31 14 45% 

B 67 30 10 33% 25 9 36% 23 7 30% 

C 20 23 3 13% 23 3 13% 22 2 9% 

D 33 24 2 8% 24 2 8% 23 2 9% 

 

Table 4: Accuracy rate of the different trained ANNs (   is 

the No. of the neurons in hidden layer). 

 

The Table shows first of all that 50 hidden layers is better 

than 30 but that 70 hidden layers appears to give no additional 

benefit. Therefore, by considering both Tables 3 & 4, we 

believe 50 neurons in hidden layer is the best ANN solution 

to detect WT pitch system fault using 31 pitch system alarms. 

  

The results also show that the ANN correctly identifies WTs 

A & B as experiencing more pitch events than WTs C & D. 

This may be due to WTs A & B having similar running 

environments to the training used WT X. 

 

In this work, the trained alarm patterns, previously listed in 

Table 2 were constructed using pitch system faults occurred 

in a real WT. These alarm patterns represent actual alarm 

patterns from one WT, although the number of possible alarm 

patterns for the 31 pitch system alarms is theoretically up 

to    . In fact, other alarm patterns may be possible due to the 

sensor failures, multiple faults or dynamic system behaviour. 

Although these untrained alarm patterns do occur, the ANN’s 

general mapping capability enables to identify the most likely 

faults. However, if a new alarm pattern is widely different 

from the trained alarm patterns, serious problems may occur 



 

due to excessive extrapolation errors [7]. For better 

performance, large numbers of training data covering a wider 

range of representative alarm patterns are needed to assure 

adequate network performance.  

 

A drawback of using ANN we found in this work is that the 

result of ANN is highly dependent on the precision of the 

training data. In addition, different WT manufacturers might 

have different type of alarm data and this will increase the 

difficulty of promoting ANN on WT fault diagnosis. 

6 Conclusion 

This paper presented a feasibility study of WT alarm 

processing and diagnosis using ANN. The suitability study of 

the ANN for the diagnosis of WT pitch system faults from 

pitch alarm has been demonstrated. The results show that: 

 

 ANN is a feasible method for online WT fault 

diagnosis. 

 ANN has potential to fast identify WT failures and 

reduce the alarm rate. 

 The confidence of ANN can be further improved by 

adding more well-defined training patterns. 

 

In conclusion, the NN approach has the potential to 

rationalise and reduce alarm data and provide valuable fault 

detection, diagnosis and prognosis. The ANN based systems 

can run very fast if hardware implementations are becoming 

available. This would make the system especially suitable for 

real-time WT fault diagnosis. 
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