249 research outputs found

    Statistical Determination of Bulk Flow Motions

    Get PDF
    We present here a new parameterization for the bulk motions of galaxies and clusters (in the linear regime) that can be measured statistically from the shape and amplitude of the two-dimensional two-point correlation function. We further propose the one-dimensional velocity dispersion (v_p) of the bulk flow as a complementary measure of redshift-space distortions, which is model-independent and not dependent on the normalisation method. As a demonstration, we have applied our new methodology to the C4 cluster catalogue constructed from Data Release Three (DR3) of the Sloan Digital Sky Survey. We find v_p=270^{+433}km/s (also consistent with v_p=0) for this cluster sample (at z=0.1), which is in agreement with that predicted for a WMAP5-normalised LCDM model (i.e., v_p(LCDM=203km/s). This measurement does not lend support to recent claims of excessive bulk motions (\simeq1000 km/s) which appear in conflict with LCDM, although our large statistical error cannot rule them out. From the measured coherent evolution of v_p, we develop a technique to re-construct the perturbed potential, as well as estimating the unbiased matter density fluctuations and scale--independent bias.Comment: 8 pages, 5 figure

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    Common variants near MC4R are associated with fat mass, weight and risk of obesity.

    Get PDF
    To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits

    ISSCR standards for the use of human stem cells in basic research

    Get PDF
    The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research

    Design Safety Considerations for Water Cooled Small Modular Reactors Incorporating Lessons Learned from the Fukushima Daiichi Accident

    Get PDF
    The global future deployment of advanced nuclear reactors for electricity generation depends primarily on the ability of nuclear industries, utilities and regulatory authorities to further enhance their reliability and economic competitiveness while satisfying stringent safety requirements. The IAEA has a project to help coordinate Member State efforts in the development and deployment of small and medium sized or small modular reactor (SMR) technology. This project aims simultaneously to facilitate SMR technology developers and potential SMR users, particularly States embarking on a nuclear power programme, in identifying key enabling technologies and enhancing capacity building by resolving issues relevant to deployment, including nuclear reactor safety. The objective of this publication is to explore common practices for Member States, which will be an essential resource for future development and deployment of SMR technology. The accident at the Fukushima Daiichi nuclear power plant was caused by an unprecedented combination of natural events: a strong earthquake, beyond th e design basis, followed by a series of tsunamis of heights exceeding the design basis tsunami considered in the flood analysis for the site. Consequently, all the operating nuclear power plants and advanced reactors under development, including SMRs, have been incorporating lessons learned from the accident to assure and enhance the performance of the engineered safety features in coping with such external events. In response to the Fukushima Daiichi accident, the IAEA established an Action Plan on Nuclear Safety. The preparation of this publication was carried out within the framework of the IAEA Action Plan on effectively utilizing research and development. The main objective of this publication is to present technology developers and user s with common considerations, approaches and measures for enhancing the defence in depth and operability of water cooled SMR design concepts to cope with extreme natural hazards. Indicative requirements to prevent such an accident from recurring are also provided for States planning to adopt water cooled SMR designs and technologies. The IAEA gratefully acknowledges the information on technology and safety aspects provided by SMR design organizations and information regarding technical requirements provided by several Member States. The IAEA officers responsible for this publication were M.H. Subki of the Division of Nuclear Power and M. Kim of the Division of Nuclear Installation Safety

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3â€Č-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore