79 research outputs found

    The Effect of black cumin (Nigella Sativa L.) alcoholic extract on body weight and the harms created in the spitial memory and learning caused by stress

    Get PDF
    Background and aims: Nigella sativa L. grain has a rich medical and religious history. Also, due to the importance of learning and memory, human being is always looking for ways to increase the ability of them. The aim of this study was to investigate the effect of alcoholic extract of Nigella Sativa L. on memory and learning. Methods: The present study was carried out on 28 adult female Wistar rats (weighing 160-200 g) in 4 groups (7 mice per group). The first group (control group) received no treatment, the second and third groups were treated orally with alcoholic extract of Nigella sativa, at a dose of 400 mg/kg of body weight by gavage for 21 days. In addition to oral gavage treatment, the third group was also treated with immobilization stress, and the 4th group was only given immobilization stress to animals. Animals were trained for 3 days and on day 21, (without the extract intake) were conducted memory tests using radial arm 8 branches. On the 1st day and the 21th day of the experiment, all mice by digital scales were weighed. The data were analyzed by One-way ANOVA and Tukey’s post hoc test. The level of significance was considered at P<0.05. Results: According to the results of Nigella sativa group and "Nigella sativa + Stress" group significantly enhanced spatial learning and memory compared to the control group and stress group, respectively (P<0.05). The results showed that Nigella sativa causes weight increases in animals receiving the Nigella sativa (P<0.05). Conclusion: The obtained results showed alcoholic extract of Nigella Sativa enhances learning and reduces the negative effects of stress on learning and spatial memory and also causes proportionable increase of bodyweigh

    Molecular detection of aminoglycoside-modifying enzyme genes in Acinetobacter baumannii clinical isolates

    Get PDF
    Acinetobacter baumannii is a major opportunistic pathogen in healthcare settings worldwide. In Iran, there are only few reports on the prevalence of aminoglycoside resistance genes among A. baumannii isolates. The aim of this study was to investigate the existence of aminoglycoside-modifying enzyme (AME) genes from A. baumannii strains collected at a university teaching hospital in Iran. One hundred A. baumannii strains were collected between 2014 and 2015 from hospitalized patients at Loghman Hakim Hospital, Tehran, Iran. Antimicrobial susceptibility was determined by disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. The DNA was extracted using a kit obtained from Bioneer Co. (Korea) and was used as a template for polymerase chain reaction. The most active antimicrobial agent against these strains was colistin. The rate of extended-spectrum cephalosporin resistance was 97%. The aadA1, aadB, aac(6′)-Ib, and aac(3)-IIa genes were found in 85%, 77%, 72%, and 68% of A. baumannii isolates, respectively. This study showed a high prevalence rate of AME genes in A. baumannii. This prevalence rate has explained that further aminoglycoside resistance genes may have role in the resistance of clinical isolates of A. baumannii. Therefore, control and treatment of serious infections caused by this opportunistic pathogen should be given more consideration

    Towards 5G wireless systems: A modified Rake receiver for UWB indoor multipath channels

    Get PDF
    This paper presents a modified receiver based on the conventional Rake receiver for Ultra-Wide Band (UWB) indoor channels of femtocell systems and aims to propose a new solution to mitigate the multipath phenomenon. Furthermore, this work proposes an upgrade for the conventional Rake receiver to fulfill the needs of 5G wireless systems through a new concept named “hybrid femtocell” that joins UWB with millimeter wave (mmWave) signals. The modified receiver is considered to be a part of the UWB/mmWave hybrid femtocell system, where it is developed for confronting the indoor multipath channels and to ensure a flexible transmission based on an Intelligent Controlling System (ICS). Hence, we seek to exploit the circumstances when the channel is less complex to switch the transmission to a higher data rate through higher M-ary Pulse Position Modulation (PPM). Furthermore, an ICS algorithm is proposed and an analytical model is developed followed by performance studies through simulation results. The results show that using the UWB technology through the modified receiver in femtocells could aid in mitigating the multipath effects and ensuring high throughputs. Thus, the UWB based system promotes Internet of Things (IoT) devices in indoor multipath channels of future 5G

    Ovarian damage from chemotherapy and current approaches to its protection

    Get PDF
    BACKGROUND: Anti-cancer therapy is often a cause of premature ovarian insufficiency and infertility since the ovarian follicle reserve is extremely sensitive to the effects of chemotherapy and radiotherapy. While oocyte, embryo and ovarian cortex cryopreservation can help some women with cancer-induced infertility achieve pregnancy, the development of effective methods to protect ovarian function during chemotherapy would be a significant advantage.OBJECTIVE AND RATIONALE: This paper critically discusses the different damaging effects of the most common chemotherapeutic compounds on the ovary, in particular, the ovarian follicles and the molecular pathways that lead to that damage. The mechanisms through which fertility-protective agents might prevent chemotherapy drug-induced follicle loss are then reviewed.SEARCH METHODS: Articles published in English were searched on PubMed up to March 2019 using the following terms: ovary, fertility preservation, chemotherapy, follicle death, adjuvant therapy, cyclophosphamide, cisplatin, doxorubicin. Inclusion and exclusion criteria were applied to the analysis of the protective agents.OUTCOMES: Recent studies reveal how chemotherapeutic drugs can affect the different cellular components of the ovary, causing rapid depletion of the ovarian follicular reserve. The three most commonly used drugs, cyclophosphamide, cisplatin and doxorubicin, cause premature ovarian insufficiency by inducing death and/or accelerated activation of primordial follicles and increased atresia of growing follicles. They also cause an increase in damage to blood vessels and the stromal compartment and increment inflammation. In the past 20 years, many compounds have been investigated as potential protective agents to counteract these adverse effects. The interactions of recently described fertility-protective agents with these damage pathways are discussed.WIDER IMPLICATIONS: Understanding the mechanisms underlying the action of chemotherapy compounds on the various components of the ovary is essential for the development of efficient and targeted pharmacological therapies that could protect and prolong female fertility. While there are increasing preclinical investigations of potential fertility preserving adjuvants, there remains a lack of approaches that are being developed and tested clinically

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore