1,292 research outputs found

    A genome-wide association study in Hispanics/Latinos identifies novel signals for lung function: the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Rationale:: Lung function and chronic obstructive pulmonary disease (COPD) are heritable traits. Genome-wide association studies (GWAS) have identified numerous pulmonary function and COPD loci, primarily in cohorts of European ancestry. Objectives: Perform a GWAS of COPD-phenotypes in Hispanic/Latino populations to identify loci not previously detected in European populations. Methods: :GWAS of lung function and COPD in Hispanic/Latino participants from a population-based cohort. We performed replication studies of novel loci in independent studies. Measurements and Main Results: Among 11,822 Hispanic/Latino participants, we identified eight novel signals; three replicated in independent populations of European Ancestry. A novel locus for forced expiratory volume in one second (FEV1) in ZSWIM7 (rs4791658; p=4.99×10-9) replicated. A rare variant (MAF=0.002) in HAL (rs145174011) was associated with FEV1 to forced vital capacity (FEV1/FVC) (p=9.59×10-9) in a region previously identified for COPD-related phenotypes; it remained significant in conditional analyses but did not replicate. Admixture mapping identified a novel region, with a variant in AGMO (rs41331850), associated with Amerindian ancestry and FEV1, which replicated. A novel locus for FEV1 identified among ever smokers (rs291231; p=1.92×10-8) approached statistical significance for replication in admixed populations of African ancestry and a novel SNP for COPD in PDZD2 (rs7709630; p=1.56×10-8) regionally replicated. Additionally, loci previously identified for lung function in European samples were associated in Hispanic/Latino participants in HCHS/SOL at the genome-wide significance level. Conclusions: We identified novel signals for lung function and COPD in a Hispanic/Latino cohort. Including admixed populations when performing genetic studies may identify variants contributing togenetic etiologies of COPD

    Phonon and magnon dynamics across antiferromagnetic transition in 2D layered van der Waals material CrSBr

    Full text link
    We report temperature-dependent reflectivity spectra of the layered van der Waals magnet CrSBr in the far-infrared region. Polarization-dependent measurements resolve the vibrational modes along the Ea\|a- and bb-axes and reveal the clear structural anisotropy. While the aa-axis phonons notably harden on cooling, the bb-axis phonon frequencies are almost temperature-independent. A phonon splitting due to the antiferromagnetic phase transition is observed for the 180~cm1^{-1} aa-axis vibrational mode, accompanied by a phonon softening below TNT_N. Furthermore, an additional mode with strong magnetic characteristics at \sim360~cm1^{-1} is identified and attributed to the magnon excitation of CrSBr.Comment: 6 pages, 3 figure

    Optical markers of magnetic phase transition in CrSBr

    Full text link
    Here, we investigate the role of the interlayer magnetic ordering of CrSBr in the framework of ab initio\textit{ab initio} calculations and by using optical spectroscopy techniques. These combined studies allow us to unambiguously determine the nature of the optical transitions. In particular, photoreflectance measurements, sensitive to the direct transitions, have been carried out for the first time. We have demonstrated that optically induced band-to-band transitions visible in optical measurement are remarkably well assigned to the band structure by the momentum matrix elements and energy differences for the magnetic ground state (A-AFM). In addition, our study reveals significant differences in electronic properties for two different interlayer magnetic phases. When the magnetic ordering of A-AFM to FM is changed, the crucial modification of the band structure reflected in the direct-to-indirect band gap transition and the significant splitting of the conduction bands along the ΓZ\Gamma-Z direction are obtained. In addition, Raman measurements demonstrate a splitting between the in-plane modes B2g2B^2_{2g}/B3g2B^2_{3g}, which is temperature dependent and can be assigned to different interlayer magnetic states, corroborated by the DFT+U study. Moreover, the B2g2B^2_{2g} mode has not been experimentally observed before. Finally, our results point out the origin of interlayer magnetism, which can be attributed to electronic rather than structural properties. Our results reveal a new approach for tuning the optical and electronic properties of van der Waals magnets by controlling the interlayer magnetic ordering in adjacent layers.Comment: 33 pages, 15 figure

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Antiviral Activity of 3(2H)- and 6-Chloro-3(2H)-Isoflavenes against Highly Diverged, Neurovirulent Vaccine-Derived, Type2 Poliovirus Sewage Isolates

    Get PDF
    BACKGROUND: Substituted flavanoids interfere with uncoating of Enteroviruses including Sabin-2 polio vaccine strains. However flavanoid resistant and dependent, type-2 polio vaccine strains (minimally-diverged), emerged during in vitro infections. Between 1998-2009, highly-diverged (8 to >15%) type-2, aVDPV(2)s, from two unrelated persistent infections were periodically isolated from Israeli sewage. AIM: To determine whether highly evolved aVDPV(2)s derived from persistent infections retained sensitivity to isoflavenes. METHODS: Sabin-2 and ten aVDPV(2) isolates from two independent Israeli sources were titered on HEp2C cells in the presence and absence of 3(2H)- Isoflavene and 6-chloro-3(2H)-Isoflavene. Neurovirulence of nine aVDPV(2)s was measured in PVR-Tg-21 transgenic mice. Differences were related to unique amino acid substitutions within capsid proteins. PRINCIPAL FINDINGS: The presence of either flavanoid inhibited viral titers of Sabin-2 and nine of ten aVDPV(2)s by one to two log(10). The tenth aVDPV(2), which had unique amino acid substitution distant from the isoflavene-binding pocket but clustered at the three- and five-fold axies of symmetry between capsomeres, was unaffected by both flavanoids. Genotypic neurovirulence attenuation sites in the 5'UTR and VP1 reverted in all aVDPV(2)s and all reacquired a full neurovirulent phenotype except one with amino acid substitutions flanking the VP1 site. CONCLUSION: Both isoflavenes worked equally well against Sabin 2 and most of the highly-diverged, Israeli, aVDPV(2)s isolates. Thus, functionality of the hydrophobic pocket may be unaffected by selective pressures exerted during persistent poliovirus infections. Amino acid substitutions at sites remote from the drug-binding pocket and adjacent to a neurovirulence attenuation site may influence flavanoid antiviral activity, and neurovirulence, respectively

    Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Get PDF
    Background The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. Methodology/Principal Findings We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Conclusions/Significance Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund

    Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures—Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction

    Get PDF
    Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of ‘hot-injection’ processes was avoided, focusing on ‘non-injection’ ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2−xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained
    corecore