932 research outputs found

    Diffractive effects in spin-flip pp amplitudes and predictions for relativistic energies

    Get PDF
    We analyze the diffractive (Pomeron) contribution to pp spin-flip amplitude and discuss the possible scenarios for energies available at the Relativistic Heavy-Ion Collider (RHIC). In particular, we show that RHIC data will be instrumental in assessing the real contribution of diffraction to spin amplitudes.Comment: 11 pages, 12 Encapsulated PostScript files, LaTeX2e use

    Physical drivers facilitating a toxigenic cyanobacterial bloom in a major Great Lakes tributary

    Get PDF
    The Maumee River is the primary source for nutrients fueling seasonal Microcystis-dominated blooms in western Lake Erie\u27s open waters though such blooms in the river are infrequent. The river also serves as source water for multiple public water systems and a large food services facility in northwest Ohio. On 20 September 2017, an unprecedented bloom was reported in the Maumee River estuary within the Toledo metropolitan area, which triggered a recreational water advisory. Here we (1) explore physical drivers likely contributing to the bloom\u27s occurrence, and (2) describe the toxin concentration and bacterioplankton taxonomic composition. A historical analysis using 10-years of seasonal river discharge, water level, and local wind data identified two instances when high-retention conditions occurred over ≄ 10 d in the Maumee River estuary: in 2016 and during the 2017 bloom. Observation by remote sensing imagery supported the advection of cyanobacterial cells into the estuary from the lake during 2017 and the lack of an estuary bloom in 2016 due to a weak cyanobacterial bloom in the lake. A rapid-response survey during the 2017 bloom determined levels of the cyanotoxins, specifically microcystins, in excess of recreational contact limits at sites within the lower 20 km of the river while amplicon sequencing found these sites were dominated by Microcystis. These results highlight the need to broaden our understanding of physical drivers of cyanobacterial blooms within the interface between riverine and lacustrine systems, particularly as such blooms are expected to become more prominent in response to a changing climate

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Exploring Flavor Structure of Supersymmetry Breaking at B factories

    Get PDF
    We investigate quark flavor signals in three different supersymmetric models, the minimal supergravity, the SU(5) SUSY GUT with right handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry, in order to study physics potential of the present and future BB factories. We evaluate CP asymmetries in various B decay modes, ΔmBs\Delta m_{B_s}, ΔmBd\Delta m_{B_d}, and Ï”K\epsilon_K. The allowed regions of the CP asymmetry in B→J/ψKSB\to J/\psi K_S and ΔmBs/ΔmBd\Delta m_{B_s}/\Delta m_{B_d} are different for the three models so that precise determinations of these observables in near future experiments are useful to distinguish the three models. We also investigate possible deviations from the standard model predictions of CP asymmetries in other B decay modes. In particular, a large deviation is possible for the U(2) model. The consistency check of the unitarity triangle including B→ππ,ρπ,D(∗)K(∗),D(∗)π,D∗ρB\to \pi\pi,\rho\pi,D^{(*)}K^{(*)},D^{(*)}\pi,D^{*}\rho, and so on, at future high luminosity e+e−e^+e^- BB factories and hadronic BB experiments is therefore important to distinguish flavor structures of different supersymmetric models.Comment: revtex4, 31 pages, 7 figure

    Raman and infrared spectra of dimethyl ether 13C-isotopologue (CH3O13CH3) from a CCSD(T) potential energy surface

    Get PDF
    So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    • 

    corecore