9 research outputs found

    Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges

    Get PDF
    Citation: Ruiz-Villanueva, V., Piégay, H., Gurnell, A. A., Marston, R. A., & Stoffel, M. (2016). Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics. doi:10.1002/2015RG000514Large wood is an important physical component of woodland rivers and significantly influences river morphology. It is also a key component of stream ecosystems. However, large wood is also a source of risk for human activities as it may damage infrastructure, block river channels, and induce flooding. Therefore, the analysis and quantification of large wood and its mobility are crucial for understanding and managing wood in rivers. As the amount of large-wood-related studies by researchers, river managers, and stakeholders increases, documentation of commonly used and newly available techniques and their effectiveness has also become increasingly relevant as well. Important data and knowledge have been obtained from the application of very different approaches and have generated a significant body of valuable information representative of different environments. This review brings a comprehensive qualitative and quantitative summary of recent advances regarding the different processes involved in large wood dynamics in fluvial systems including wood budgeting and wood mechanics. First, some key definitions and concepts are introduced. Second, advances in quantifying large wood dynamics are reviewed; in particular, how measurements and modeling can be combined to integrate our understanding of how large wood moves through and is retained within river systems. Throughout, we present a quantitative and integrated meta-analysis compiled from different studies and geographical regions. Finally, we conclude by highlighting areas of particular research importance and their likely future trajectories, and we consider a particularly underresearched area so as to stress the future challenges for large wood research. ©2016. American Geophysical Union

    A remote sensing-GIS based approach for assessment of chinook salmon rearing habitat in the Unuk river floodplain

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2007Remote sensing offers an alternative method to managers in mapping and monitoring the habitat within large rivers. Large rivers are not accommodating for traditional (foot) fish habitat surveys due to their size and typically complex habitat. This study investigates the use of digital aerial photos and thermal infrared images acquired in spring 2003-2005 to map and quantify juvenile chinook salmon (Oncorhynchus tshawytscha) habitat in a 12-river km section of the Unuk River floodplain in Southeast Alaska. Images were processed and analyzed to produce a fluvial landscape classification (7 landcover classes with an overall classification accuracy of ~84%) using a combination of aerial and thermal images. Change detection of large woody debris (LWD) was also examined and revealed both quantitative and distributional changes during the 3 years. A GIS-based habitat suitability analysis was used to identify potential chinook salmon rearing habitats including: river channel edges, sloughs, braids, pools associated with LWD and primary river channels. Overall 77.82 hectares of potentially medium/high chinook rearing habitats were identified. Results from this study provide a promising foundation towards mapping and monitoring salmon habitat in large river systems for purposes of protection, conservation and monitoring to ensure sustainable stocks of salmon.Monitoring large woody debris dynamics in the Unuk River, Alaska -- Decision-based fusion for improved fluvial landscape classification using digital aerial photographs and forward looking infrared images -- A GIS-based approach to map and quantify chinook salmon rearing habitat in a large glacial floodplain river in Southeast Alaska

    Use of Remote Imagery to Analyse Changes in Morphology and Longitudinal Large Wood Distribution in the Blanco River After the 2008 Chaiten Volcanic Eruption, Southern Chile

    No full text
    The 2008 Chaitén volcanic eruption generated significant changes in the channel morphology and large wood (LW) abundance along the fluvial corridor of the Blanco River, southern Chile. Comparisons of remote sensing images from the pre-eruption (year 2005) and post-eruption (years 2009 and 2012) conditions showed that in a 10.2km long study segment the Blanco River widened 3.5 times from 2005 to 2009, and that the maximum enlargement was nine times the original width. Changes in channel width were lower between the years 2012 and 2009. The sinuosity and braiding indexes also changed between 2005 and 2009. After the eruption the channel sinuosity was higher and specific river reaches developed a braided pattern, but by 2012 the channel was recovering pre-eruption characteristics. Huge quantities of LW were introduced to the study segment; individual LW per km of channel length were 1.6 and 74.3 in 2005 and 2009, respectively, and more than 30 log jams km-1 were observed in the year 2009. Between 2009 and 2012 the quantity of LW was very similar. Statistically significant relationships were found between the number of log jams and channel sinuosity and between the number of pieces of large wood with sinuosity and channel width. Wood was highly dynamic between 2009 and 2012: 78% of individual pieces and 48% of log jams identified in the 2009 image had moved by 2012. Finally the supervised classification of imagery associated with ArcMap tools was tested to identify large woo
    corecore