112 research outputs found
Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?
We present a new study investigating whether active galactic nuclei (AGN)
beyond the local universe are preferentially fed via large-scale bars. Our
investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the
AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies
at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN
host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive
control galaxies matched in stellar mass, rest-frame colour, size, Sersic
index, and redshift. Using the GZH bar classifications of each sample, we
demonstrate that AGN hosts show no statistically significant enhancement in bar
fraction or average bar likelihood compared to closely-matched inactive
galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above
the control bar fraction by more than a factor of two, at 99.7% confidence. We
similarly find no significant difference in the AGN fraction among barred and
non-barred galaxies. Thus we find no compelling evidence that large-scale bars
directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at
z=0, implies that moderate-luminosity AGN have not been preferentially fed by
large-scale bars since z=1. Furthermore, given the low bar fractions at z>1,
our findings suggest that large-scale bars have likely never directly been a
dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA
SDSS-IV MaNGA: The link between bars and the early cessation of star formation in spiral galaxies
Bars are common in low-redshift disk galaxies, and hence quantifying their influence on their host is of importance to the field of galaxy evolution. We determine the stellar populations and star formation histories of 245 barred galaxies from the MaNGA galaxy survey, and compare them to a mass-and morphology-matched comparison sample of unbarred galaxies. At fixed stellar mass and morphology, barred galaxies are optically redder than their unbarred counterparts. From stellar population analysis using the full spectral fitting code Starlight, we attribute this difference to both older and more metal-rich stellar populations. Dust attenuation however, is lower in the barred sample. The star formation histories of barred galaxies peak earlier than their non-barred counterparts, and the galaxies build up their mass at earlier times. We can detect no significant differences in the local environment of barred and un-barred galaxies in this sample, but find that the HI gas mass fraction is significantly lower in high-mass (M > 10 10 M) barred galaxies than their non-barred counterparts. We speculate on the mechanisms that have allowed barred galaxies to be older, more metal-rich and more gas-poor today, including the efficient redistribution of galactic fountain byproducts, and a runaway bar formation scenario in gas-poor disks. While it is not possible to fully determine the effect of the bar on galaxy quenching, we conclude that the presence of a bar and the early cessation of star formation within a galaxy are intimately linked
Challenges in monitoring and managing engineered slopes in a changing climate
© 2016 The Authors. Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure. Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale. This paper presents challenges to producing such a system and research being carried out to address some of these using electrical resistance tomography (ERT). Experimental results show that whilst it is possible to measure soil water content indirectly via resistivity the relationship between resistivity and water content will change over time for a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative information is provided. The paper also presents examples of how such data can be processed and communicated to asset owners for the purposes of asset management
SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment
We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of ‘centrally suppressed’ galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density
Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment
The most luminous, merger-free AGN show only marginal correlation with bar presence
The role of large-scale bars in the fuelling of active galactic nuclei (AGN)
is still debated, even as evidence mounts that black hole growth in the absence
of galaxy mergers cumulatively dominated and may substantially influence disc
(i.e., merger-free) galaxy evolution. We investigate whether large-scale
galactic bars are a good candidate for merger-free AGN fuelling. Specifically,
we combine slit spectroscopy and Hubble Space Telescope imagery to characterise
star formation rates (SFRs) and stellar masses of the unambiguously
disc-dominated host galaxies of a sample of luminous, Type-1 AGN with 0.02 < z
0.024. After carefully correcting for AGN signal, we find no clear difference
in SFR between AGN hosts and a stellar mass-matched sample of galaxies lacking
an AGN (0.013 < z < 0.19), although this could be due to a small sample size
(n_AGN = 34). We correct for SFR and stellar mass to minimise selection biases,
and compare the bar fraction in the two samples. We find that AGN are
marginally (1.7) more likely to host a bar than inactive galaxies, with
AGN hosts having a bar fraction, fbar = 0.59^{+0.08}_{-0.09} and inactive
galaxies having a bar fraction fbar = 0.44^{+0.08}_{-0.09}. However, we find no
further differences between SFR- and mass-matched AGN and inactive samples.
While bars could potentially trigger AGN activity, they appear to have no
further, unique effect on a galaxy's stellar mass or SFR.Comment: 15 pages (9 figures). Accepted for publication in MNRA
Quantifying the Poor Purity and Completeness of Morphological Samples Selected by Galaxy Colour
The galaxy population is strongly bimodal in both colour and morphology, and the two measures correlate strongly, with most blue galaxies being late-types (spirals) and most early-types, typically ellipticals, being red. This observation has led to the use of colour as a convenient selection criteria to make samples which are then labelled by morphology. Such use of colour as a proxy for morphology results in necessarily impure and incomplete samples. In this paper, we make use of the morphological labels produced by Galaxy Zoo to measure how incomplete and impure such samples are, considering optical (ugriz), NUV and NIR (JHK) bands. The best single colour optical selection is found using a threshold of g − r = 0.742, but this still results in a sample where only 56% of red galaxies are smooth and 56% of smooth galaxies are red. Use of the NUV gives some improvement over purely optical bands, particularly for late-types, but still results in low purity/completeness for early-types. No significant improvement is found by adding NIR bands. With any two bands, including NUV, a sample of early-types with greater than two-thirds purity cannot be constructed. Advances in quantitative galaxy morphologies have made colour-morphology proxy selections largely unnecessary going forward; where such assumptions are still required, we recommend studies carefully consider the implications of sample incompleteness/impurity
Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
Galaxy Zoo: Are bars responsible for the feeding of active galactic nuclei at 0.2<z<1.0?
We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.21, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growt
Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 \u3c \u3cem\u3ez\u3c/em\u3e \u3c 1.0?
We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 \u3c z \u3c 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 1042 erg s−1 \u3c LX \u3c 1044 erg s−1, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sérsic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of 2, at 99.7 per cent confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2 \u3c z \u3c 1.0. This result, coupled with previous results at z = 0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z = 1. Furthermore, given the low bar fractions at z \u3e 1, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growth
- …