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SUMMARY
A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to can-
cer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics
demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner,
and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expres-
sion is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of
tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression corre-
lates with disease progression. These results signify a critical role for acetate consumption in the production
of lipid biomass within the harsh tumor microenvironment.
INTRODUCTION

Under typical cell culture conditions and in many tissues within

the human body, the primary source of lipids for membrane

biogenesis is the plasma. However, exposure to lipid-deplete

conditions causes a highly coordinated reorganization of the

lipid metabolism machinery that is primarily orchestrated by
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for biomass production required for growth and survival under

unfavorable conditions (Baenke et al., 2013).

Despite knowledge of the relationship between tumor pro-

gression and changes in lipid metabolism (Menendez and

Lupu, 2007), it was not until the early 1990s that fatty acid

synthase (FASN) was strongly associated with recurrence,

metastases, and death in breast cancer patients (Kuhajda

et al., 1994). Subsequently, de novo fatty acid synthesis was

found to be a critical regulator of breast, prostate, and lung

cancer growth (Alli et al., 2005; Orita et al., 2008; Pizer et al.,

1996a, 1996b, 1996c, 2001; Puig et al., 2009; Zhan et al.,

2008). Selective activation of the fatty-acid-synthesis pathway

commonly occurs in many cancer types, and, in particular,

FASN upregulation was identified as an early event during

the development of prostate cancer (Swinnen et al., 2000b,

2002); evidence suggested that this lipogenic phenotype was

driven by SREBF signaling (Swinnen et al., 2000a). Further-

more, RNAi silencing of FASN expression in an androgen-re-

ceptor-positive prostate cancer cell line strongly inhibited

cell proliferation (De Schrijver et al., 2003). It has even been

suggested that FASN itself can be sufficient to drive the trans-

formation of prostate cells and may be a good target for anti-

neoplastic therapy (Migita et al., 2009). Consequently, FASN

has been the subject of drug development efforts, and specific

FASN inhibitors, such as C75 and GSK837149A, have been

developed and shown to kill cancer cells as well as synergize

with established therapies (Menendez and Lupu, 2007). But

crucially, these compounds have been shown to have poor

pharmacokinetics or exhibit target-related toxicities. These

findings support the hypothesis that targeting lipid synthesis

can have a marked effect on cancer growth, but that the cur-

rent selected targets may not be optimal, highlighting the need

for the discovery of additional therapeutic targets that inhibit

lipid metabolism.

The sole carbon source and precursor for both fatty acid and

cholesterol biosynthesis in mammalian cells is acetyl-CoA. The

cytosolic pool of acetyl-CoA is mainly supplied by two different

ATP-dependent reactions: cleavage of citrate into oxaloacetate

and acetyl-CoA by ATP citrate lyase (ACLY) or the ligation of

acetate and CoA by acetyl-CoA synthetase (ACSS). It has

been shown that ACLY is required for cell growth and cancer

cell survival, and there has been interest in the development

of ACLY inhibitors, with some showing potential at inhibiting tu-

mor growth (Beckers et al., 2007; Hatzivassiliou et al., 2005; Zu

et al., 2012). However, only a few studies have addressed the

potential role of acetate in the context of cancer (Yoshii et al.,

2009a, 2009b; Yoshimoto et al., 2001; Yun et al., 2009). There

are three genes that encode ACSS proteins, namely ACSS1,

ACSS2, and a more recently proposed third family member

ACSS3 (Luong et al., 2000; Watkins et al., 2007). ACSSs

were originally identified as SREBF target genes, but relatively

little is known regarding the regulation of ACSS gene expres-

sion (Luong et al., 2000; Schwer et al., 2006; Sone et al.,

2002). Early studies indicated that ACSS activity controlled ac-

etate uptake (Luong et al., 2000; Tucek, 1967). Herein, we at-

tempted to identify lipid metabolism genes that were critical

to the growth and survival of breast and prostate cancer cells

in metabolically stressed conditions, such as hypoxia and low

lipid availability.
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RESULTS

Exposure to Hypoxia and Low Serum Alters Lipid
Metabolism
It is now widely accepted that de novo lipogenesis is critical to

tumor progression and survival and is driven by the increased

expression of a host of lipogenic enzymes (reviewed by Menen-

dez and Lupu, 2007; Zaidi et al., 2013). We initially characterized

the dependency of breast cancer cell lines on de novo fatty acid

synthesis under high- and low-serum conditions. The FASN in-

hibitor C75 had no effect on breast cancer cell lines when

cultured in the presence of 10% serum (Figure 1A). However,

treatment in low serum reduced cell number in the majority of

the breast cancer cell lines tested. In addition, the IC50 for a

recently developed FASN inhibitor, AZ22, was drastically

improved when cells were cultured in low serum (Figure 1B

and Figure S1A available online).

To delineate changes in the lipid profiles of normoxic versus

hypoxic cancer cells, we performed high-resolution acyl chain

profiling of phosphatidylcholine (PC) and phosphatidylethanol-

amine (PE) using liquid chromatography-tandem mass spec-

trometry (LC-MS/MS)-based lipidomics. We noted a shift in the

profile of PC and PE that was mainly characterized by the pres-

ence of shorter, more saturated acyl chains in hypoxia compared

to normoxia (Figures 1C and S1B). This type of shift is indicative

of increased de novo fatty acid synthesis and elongation, which

produce mainly saturated fatty acyl-CoA and, to a lesser degree,

monounsaturated acyl-CoA (Hilvo et al., 2011; Rysman et al.,

2010; Sahar et al., 2014). Since glucose can contribute to the

synthesis of phospholipids by supplying the glycerol backbone

via glycerol 3-phosphate and also by the production of the fatty

acid precursor acetyl-CoA, we traced the fate of 13C6-glucose

using targeted metabolomics and lipidomics (Figure S1C). It

should be noted that all metabolomics experiments throughout

the entire study used custom-formulated serum-like tissue cul-

ture medium (SMEM) containing concentrations of metabolites

more physiologically relevant to human plasma than what is typi-

cally found in standard growth mediums. Selected metabolite

concentrations were based on the most current literature where

available and also as defined by the NIH (http://www.nlm.nih.

gov/medlineplus/ency/article/003361.htm; Table S1).

A high volume of medium to cell number ratio was maintained

to ensure cells were exposed to concentrations of metabolites

that were still within the reported physiological ranges. For

instance, we found that 20% of available glucose in normoxia

and 40%during hypoxia was consumed during a typical 24 hr in-

cubation (Figure S1D). We also noted that, in normoxia, glucose

was readily used by the tricarboxylic acid (TCA) cycle with >75%

of citrate labeled from glucose; however, under hypoxic condi-

tions, this contribution was decreased 5-fold (Figure S1E). This

was likely due to the well-characterized inactivation of pyruvate

dehydrogenase by pyruvate dehydrogenase kinase 1 under hyp-

oxic conditions (Kim et al., 2006; Papandreou et al., 2006). In

addition, an in-depth analysis of the most abundant PC species

(34:1) detected a high degree of labeling under normoxic condi-

tions (>95%), suggesting that the majority of PC(34:1) had been

synthesized de novo from glucose (Figure S1F). Strikingly, in

hypoxia, there was a sharp decline in the labeling of the fatty

acid component of PC(34:1) (i.e., isotopologs R M+4), but not

http://www.nlm.nih.gov/medlineplus/ency/article/003361.htm
http://www.nlm.nih.gov/medlineplus/ency/article/003361.htm


Figure 1. In Vivo Conditions Are Most Closely Mimicked by Culturing Cells in Low Serum and Hypoxia

(A) Sensitivity of breast cancer cells to C75 (2.5 mM) treatment in high (10%) and low (1%) serum concentrations. Data are presented as mean ± SEM (n = 3).

(B) pIC50 (�log IC50) values for AZ22 in breast cancer cell lines cultured in full serum or lipid-reduced serum. Data are presented as mean ± SEM (n R 3).

(C) Lipid profiling of PC by LC-MS under normoxic (21%) and hypoxic (0.1%) conditions in MDA-MB-468 breast cancer cells grown in low serum. PC species

containing highly polyunsaturated acyl chains (R3 C = C bonds) are underlined. Data are presented as mean ± SEM (n = 3).

(D) DU145, MDA-MB-468, and PC3 spheroids were grown in full medium and in the presence of AZ22 for 8–12 days to determine the dependency of spheroid

growth on de novo fatty acid synthesis. Data are presented as mean ± SEM (n R 3).

(E) Short-term tumor xenograft growth of BT474 cells treatedwith vehicle or AZ62. Tumorswere grown to 100mm3 and size-matched animals were randomized to

AZ62 or vehicle treatment. Animalswere treatedwith AZ62 at 100mg/kg (oral administration) daily for 7 days. Data are presented asmean ±SEM (n = 4 per group).

(F) Steady-state levels of acetyl-CoA and CDP-choline in BT474 tumor extracts as determined by LC-MS-based metabolomics. Data are presented as

mean ± SEM (n = 6 per group).

See also Figure S1 and Table S1.
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the labeling of the glycerol backbone (M+3) (Figure S1F). These

results imply that the majority of glycerol within the PC fraction is

generated de novo by the cells, and suggest a strong depen-

dency on biosynthetic pathways (Brockmöller et al., 2012).

Given the observed changes in lipid metabolism and

increased sensitivity to FASN inhibition in hypoxia and low

serum, we next examined whether spheroids and tumor

xenografts, models that naturally generate oxygen and nutrient

gradients, also were susceptible to FASN inhibition. DU145,

MDA-MB-468, and PC3 spheroid cultures treated with AZ22

were all dose-dependently sensitive to FASN inhibition (Fig-

ure 1D). Furthermore, using a different FASN inhibitor (AZ62)

with improved pharmacokinetics and increased tolerance in vivo,

we found that AZ62 inhibited BT474 xenograft tumor growth

(Figures 1E and S1G). Analysis of metabolite extracts from

the AZ62-treated tumors by liquid chromatography-mass

spectrometry (LC-MS) detected elevated levels of the fatty

acid precursor acetyl-CoA and the PC precursor CDP-choline

(Figure 1F).

Altogether, these results indicate that metabolic stress in-

duces major changes in the lipid metabolism landscape of

cancer cells, creating a dependence on de novo lipogenesis

for survival in hypoxia/low serum (Ackerman and Simon, 2014;

Bensaad et al., 2014). The data imply that, despite a high level

of de novo lipogenesis under hypoxia (30%–50% labeled from

glucose via glycerol 3-phosphate), glucose contribution to fatty

acid biosynthesis is markedly decreased and an alternative car-

bon source would be required. Lastly, the growth inhibition

observed in conditions of metabolic stress was recapitulated in

spheroids and tumors, suggesting that tumors are indeed sub-

ject to conditions in which oxygen and lipids are severely limited.

Functional Genomics Identifies ACSS2 as a Critical
Gene for Cancer Cell Survival under Hypoxic or Low-
Serum Conditions
Expression of many genes involved in lipid biosynthesis is

induced in response to activation of SREBF by the PI3K/Akt/

mTORC1-signaling axis (Porstmann et al., 2008), which is

frequently deregulated in human cancer. Furthermore, 50% of

genes predicted to be highly significant for increasing the

biomass of cancer cells by a genome-scale metabolic model
Figure 2. ACSS2 Is Frequently Upregulated in Cancer and Positively C

(A) Proportional phenotypic classification of siRNA target genes.

(B) Top hits from screening under metabolic stress. Growth data are presented as

mean ± upper and lower limits (n = 3) (black bars, right y axis) and are normalize

(C) Representative immunohistochemistry images of ACSS2 expression from a t

(D) Histograms illustrating ACSS2 expression in normal adjacent breast tissue (N

significant; n = 75).

(E) ACSS2 DNA copy-number variation comparing normal and IDC samples (p v

lower quartiles, the band represents the median, and the whiskers represent 5–9

(F) ACSS2 mRNA expression at different stages of IDC (asterisk, p < 0.05, Dunne

band represents the median, and the whiskers represent 5–95th percentile.

(G) ACSS2 mRNA expression in invasive carcinoma and the patient survival st

represent the upper and lower quartiles, the band represents the median, and th

(H) Representative immunohistochemistry images of ACSS2 expression from a t

(I) Histogram illustrating ACSS2 expression in normal tissue and primary and me

(J) The p values and fold change showing increased ACSS2 expression in metas

from the Grasso (left) and Chandra (right) prostate cancer data sets available from

the median, and the whiskers represent minimum and maximum (p values are in

See also Figure S2 and Tables S2, S3, and S4.
of cancer were associated with lipid metabolism (Folger et al.,

2011). Based on these independent lines of evidence, we

assembled a small interfering RNA (siRNA) library of 66 potential

targets with gene ontologies associated with lipid metabolism

(Figure 2A; Tables S2 and S3). Functional genomics screens

were performed using eight breast and three prostate cancer

cell lines (Table S4). Based on our preliminary results with

FASN inhibitors (Figure 1), we investigated growth inhibition

during metabolic stress: 1% serum in normoxia, 10% serum in

hypoxia, and 1% serum in hypoxia compared to the nutrient-

and oxygen-rich conditions of 10% serum in normoxia. A strictly

standardized mean difference (SSMD) was used to evaluate the

potency and selectivity of silencing on growth relative to an inter-

nal nontargeting control (Zhang, 2011; Table S4). This prelimi-

nary filter was used to rank targets according to the difference

in growth inhibition when comparing normoxia to hypoxia or

10% serum to 1% serum conditions (Table S4). The top targets

from the screen were reassessed using a different pool of

siRNAs (Figure 2B; Table S4). Following siRNA pool deconvolu-

tion of all the shortlisted targets, we found the top hits for hypoxia

and low serum were, respectively, acetyl-CoA synthetase 2

(ACSS2) and stearoyl-CoA desaturase (SCD) (Figure 2B).

We next performed a comprehensive data mining analysis of

the expression and disease association of the targets that

passed deconvolution. ACSS2 had the highest frequency of

DNA copy-number gain in breast tumors and was associated

with increased ACSS2 expression (Figures S2A and S2B). The

relatively focal ACSS2 amplicon, which contains 47 other genes,

spans most of the genomic region encompassing 20q11.22 and

does not include any cancer consensus genes (Figures S2C and

S2D). In support of the expression data from publically available

patient data sets, immunohistochemical staining of tumor micro-

arrays revealed high ACSS2 expression in nearly 40%of invasive

ductal carcinomas (IDCs) compared to their normal adjacent

tissue samples, with a similar trend observed in invasive lobular

carcinomas (ILCs) (Figures 2C and 2D). Focused datamining of a

separate breast cancer database noted a significant increase in

ACSS2 copy number in cancer versus normal tissue (Figure 2E;

Curtis et al., 2012). There was also a strong correlation between

ACSS2 expression and disease progression (Figure 2F; Curtis

et al., 2012). A Dunnet’s multiple comparison test between stage
orrelates with Disease Progression and Poor Survival

mean ± SD (white bars, left y axis) andmRNA expression data are presented as

d to a nontargeting control siRNA pool.

issue microarray of breast cancer samples.

AT, n = 12) and (left) IDC (p value = 0.0295; n = 78) and (right) ILC (NS = not

alue = 1.0 3 10�4, unpaired, two-tailed t test). Boxes represent the upper and

5th percentile.

t multiple comparison test). Boxes represent the upper and lower quartiles, the

atus at 1 and 5 years (Mann-Whitney test, p values are as indicated). Boxes

e whiskers represent 10th–90th percentile.

issue microarray of prostate cancer samples.

tastatic prostate cancers.

tatic prostate cancer compared with primary site tumors. Data were obtained

Oncomine. Boxes represent the upper and lower quartiles, the band represents

dicated, unpaired, two-tailed t test).
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Figure 3. Metabolic Stress Induces Upregu-

lation of ACSS2 and Causes Cells to

Become Increasingly Sensitive to ACSS2

Depletion

(A) BT474 and DU145 cell counts at 96 hr post-

siRNA transfection. Dotted line represents the

seeding density. Data are presented asmean ± SD

(n = 3).

(B) ACSS2 mRNA expression in BT474 and DU145

cells under metabolic stress (hypoxia = 0.1% O2).

Error bars represent SEM (n = 2).

(C) ACSS2 protein expression in BT474 and

DU145 cells under metabolic stress.

(D) ACSS2 mRNA expression in BT474c1 cells

expressing an shRNA against ARNT. Data are

normalized to expression of shNTC in normoxia +

10% serum. Error bars represent SEM (n = 3).

(E) ACSS2 mRNA expression in BT474c1 cells

transfected with a nontargeting control siRNA or a

pool of siRNAs against SREBF1 or SREBF2. Data

are normalized to expression of siNTC in 10%

serum and normoxia (hypoxia = 0.1% O2). Error

bars represent SEM (n = 3).

See also Figure S3.
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0 and all other stages found there was significant upregulation of

ACSS2 in stages 2, 3, and 4, and a test of linear trend further

confirmed a systematic increase in ACSS2 expression with

escalating tumor stage (p = 0.0001) (Figure 2F). Using this

same data set, we further noted that ACSS2 expression was

significantly higher (p < 0.05; Mann-Whitney test) in patients

who did not survive past 1 or 5 years postdiagnosis (Figure 2G).

In prostate cancer patients, there was an increased expression

of ACSS2 in metastasis compared to primary tumor or normal

tissue (Figures 2H and 2I). These results were consistent with ob-

servations from two different publically available prostate cancer
62 Cancer Cell 27, 57–71, January 12, 2015 ª2015 The Authors
data sets, suggesting that ACSS2 may

be particularly important in more aggres-

sive prostate cancers and metastases

(Figure 2J).

Hypoxia and Low-Serum Culture
Conditions Synergistically Enhance
ACSS2 Expression
The Cancer Cell Line Encyclopedia was

used to identify breast cancer cell lines

with strong evidence for ACSS2 copy-

number gain and upregulation (Barretina

et al., 2012; Forbes et al., 2011; Shao

et al., 2013). Two of the cancer cell lines

used in the functional screen had high

ACSS2 expression, namely MDA-MB-

468 and SKBr3, while BT474 had the

overall highest level of DNA copy-number

gain and expression (Figures S3A and

S3B). DNA copy-number gain for both

the 20q arm and 20q11 chromosomal

band, containing ACSS2, has been re-

ported previously for BT474 and SKBr3,

as detected by fluorescence in situ hy-
bridization, genomic hybridization, and comparative genomic

hybridization array (Brinkmann et al., 1996; Guan et al., 1996;

Pinkel et al., 1998; Rondón-Lagos et al., 2014). Given the

enhanced growth inhibition observed by ACSS2 silencing during

the functional screening in hypoxia, we measured ACSS2-

dependent growth during metabolic stress. Silencing of ACSS2

was most effective at growth inhibition under metabolic stress

and, interestingly, was cytotoxic to BT474 cells (Figures 3A

and S3C). Furthermore, expression analysis of our panel of can-

cer cell lines revealed consistent upregulation of ACSS2 at both

the mRNA (Figures 3B, S3D, and S3E) and protein levels
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(Figure 3C) under metabolic stress. These results reinforced

the hypothesis that ACSS2 becomes important for cell prolifera-

tion under metabolic stress and that cancer cells harboring

ACSS2 copy-number gains may be more vulnerable to ACSS2

depletion.

A test for mutual exclusivity among 962 breast cancer samples

(The Cancer Genome Atlas) revealed a significant tendency to-

ward co-occurrence between ACSS2 and hypoxia-inducible

transcription factor (HIF) targets LDHA and PDK1, suggesting it

may be a HIF target (Figure S3F). Indeed, small hairpin RNA

(shRNA)-mediated silencing of ARNT expression reduced the

upregulation of ACSS2 by 2.5-fold (Figures 3D and S3G). How-

ever, unlike the complete loss of hypoxia-induced upregulation

of LDHA and PDK1 noted after ARNT silencing, some ACSS2

upregulation persisted (Figures 3D and S3H). Since ACSS2 is

known to be a target of SREBF signaling (Luong et al., 2000)

and SREBFs are activated by lipid depletion (Briggs et al.,

1993; Wang et al., 1993), it seemed likely that ACSS2 expression

would be controlled by SREBFs. Silencing of SREBF2, but

not SREBF1, completely eliminated the upregulation of ACSS2

under conditions of metabolic stress (Figures 3E and S3I).

Together, the expression data imply that SREBF2 mainly con-

trols ACSS2 expression, but that ARNT-dependent HIF signaling

enhances the upregulation of ACSS2 by SREBF2. Interestingly,

the expression of FASN was highly upregulated under metabolic

stress and controlled in exactly the same manner as ACSS2,

suggesting the two targets are intimately linked (Figure S3J).

Acetate Supports Biosynthesis of Membrane
Phospholipids
The molecular function of ACSS2 is to ligate acetate with coen-

zyme A in an ATP-dependent reaction to produce acetyl-CoA, a

metabolite central to a range of cellular processes (Figure 4A).

We investigated if acetate contributed to the acetyl-CoA pool

and, furthermore, if it was used for lipid synthesis. To that end,

BT474c1, a more tumorigenic subclone of BT474, was used.

BT474c1 cells, which express similar levels of ACSS2 as their

parental cells (Figure S3B), had increased 14C2-acetate uptake

under hypoxic conditions (Figure 4B). Also, 14C2-acetate-depen-

dent fatty acid synthesis increased during metabolic stress (Fig-

ure 4C). However, in all cell lines tested, the steady-state levels of

acetyl-CoA were much lower in hypoxia (Figure 4D).

To investigate this further, we traced the incorporation of 13C2-

acetate into the acetyl-CoA pool and found that, at most, 10%

was labeled during normoxic and lipid-replete growth condi-

tions, while during metabolic stress, over 50% of the acetyl-

CoA pool was labeled by acetate over a 12 hr period (Figure 4E).

The mutual mRNA regulation of ACSS2 and FASN suggested

acetate was being used to support membrane phospholipid

biosynthesis during metabolic stress. To study this, we em-

ployed LC-MS/MS-based lipidomics to trace the incorporation

of 13C2-acetate into the PC(34:1) during metabolic stress. There

was a rightward shift of the PC-isotopolog-labeling pattern, indi-

cating that a higher percentage of PC carbon was sourced from

acetate during metabolic stress than normal growth conditions

(Figure 4F). This shift is highly indicative of an increased availabil-

ity of acetate-derived acetyl-CoA for fatty acid synthesis, and,

importantly, shows that acetate can be a major nutritional

source.
ACSS2 Controls Acetate Uptake and Contribution to
Fatty Acids
Previous reports had suggested that acetate consumption is

dictated by functional expression of ACSS2 (Luong et al.,

2000; Tucek, 1967). Measurement of [3H]-acetate uptake in

BT474c1 cells, as well as DU145 prostate cancer cells, demon-

strated reduced acetate consumption after ACSS2 depletion

(Figures 5A and 5B). Interestingly, BT474c1 cells that expressed

high levels of ACSS2 exhibited almost twice asmuch acetate up-

take compared to DU145 cells that expressed low levels of

ACSS2 (Figures 5B and S3B). We further investigated for signs

of inhibition of lipid synthesis by quantifying the substrate of

the final enzymatic reaction in the synthesis of PC and PE (Fig-

ure 5C). Similar to the results using FASN inhibitors (Figure 1F),

CDP-choline and CDP-ethanolamine steady-state levels were

elevated upon ACSS2 silencing, suggesting impairment of de

novo lipogenesis (Figure 5D). Since serum is a source of lipids,

growth factors, and other nutrients, we reassessed ACSS2-

dependent growth in lipid-depleted serum (LPDS) to ascertain

if the observed growth effects during hypoxia, such as seen in

Figure 3, were due to the loss of extracellular lipids or another

component in the serum. Cells grown in 10% LPDS were more

sensitive to ACSS2 silencing than cells grown in 10% full serum

in hypoxia (Figure 5E). Similar to 1% serum, 10% LPDS also

induced ACSS2 expression in hypoxia (Figure 5F).

The most highly characterized pathway of acetate metabolism

concerns the conversion of acetate to acetyl-CoA and the use

of 2-carbon acetyl units to synthesize fatty acids through

successive rounds of condensation by FASN (Roncari, 1974,

1975). We investigated if acetate was being used as an anabolic

precursor for de novo fatty acid synthesis. The concentration of

plasma acetate in humans varies between 0.05 and 0.25 mM

(Scheppach et al., 1991; Skutches et al., 1979; Tollinger et al.,

1979), but can increase up to 1 mM after alcohol consumption

(Lundquist et al., 1962; Tsukamoto et al., 1989). The acetate con-

centration in mouse and rat plasma ranges between 0.20 and

0.30 mM (Kimura et al., 2013; Maxwell et al., 2010). The acetate

concentration in media + 10% serum was measured by gas

chromatography-mass spectrometry and determined to be

0.10 mM (Table S1). Besides exogenous sources, acetate can

be produced endogenously via protein deacetylation. However,

we and others observed that histone acetylation is induced un-

der hypoxia indicating that deacetylation is unlikely an acetate

source during metabolically stressed conditions (Vaapil et al.,

2012; Watson et al., 2009; our unpublished observations).

Initially, we characterized the contribution of 13C2-acetate to

fatty acid synthesis by comparing the isotopolog-labeling

pattern of palmitate and stearate during metabolic stress. LC-

MS-based analysis of palmitate revealed small dose-dependent

differences in acetate-dependent palmitate synthesis as the

concentration of acetate increased from 0.10 to 0.50 mM (Fig-

ure 5G). Similar to the PC-isotopolog-labeling pattern in Figure 4,

there was an overall shift in the abundance of isotopologs <M+8

to R M+8 when cells were exposed to metabolic stress, sug-

gesting increased availability of acetate-derived acetyl-CoA for

fatty acid synthesis (Figure 5G). Similar results were obtained

for stearate (Figure S4A). In addition, silencing of ACSS2 strongly

impaired both palmitate and stearate labeling from acetate (Fig-

ures S4B and S4C).
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Figure 4. Metabolic Stress Increases Acetate Uptake and Supports Biosynthesis of Membrane Phospholipids

(A) Schematic for the ACSS2 reaction and destinations for nucleocytosolic acetyl-CoA.

(B) 14C2-acetate uptake under metabolic stress. Data are presented as mean ± SEM (n = 3).

(C) 14C2-acetate-dependent lipid synthesis over a 12 hr period under metabolic stress. Data are presented as mean ± SEM (n = 3).

(D) Steady-state acetyl-CoA levels in a panel of breast cancer cell lines. Data are presented as mean ± SD (n R 3).

(E) Enrichment of 0.20mM 13C2-acetate in the acetyl-CoA pool in BT474c1 cells cultured in normoxia and SMEM+ 10%serum or hypoxia and SMEM+ 1%serum

over a 12 hr period. Data are presented as mean ± SEM (n R 3).

(F) Abundance of PC(34:1) isotopologs in BT474 cells cultured in SMEM+ 1% serum supplemented with 0.50 mM 13C2-acetate. Area under the curve is shown to

highlight the shift in the isotopolog-labeling pattern induced by metabolic stress. Data are presented as mean ± SEM (n R 2).
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We next traced the fate of 13C2-acetate within the TCA cycle

by looking at the isotpolog-labeling pattern of citrate. However,

this would be controlled mainly by the other ACSS isoform,

ACSS1, which has been shown to be localized to the mitochon-

dria (Fujino et al., 2001). ACSS1 activity did slightly compensate
64 Cancer Cell 27, 57–71, January 12, 2015 ª2015 The Authors
for silencing of ACSS2 under normoxic conditions, in which an

active TCA cycle was still running (Figure S4D). This was shown

by the increase in M+2 and M+3 labeling of citrate following

ACSS2 silencing in normoxia (Figure S4D). However, under hyp-

oxic conditions, the compensation by ACSS1 was compromised
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(Figure S4D). This is in line with the observation that ACSS1

mRNA expression was downregulated during hypoxia, which

is completely opposite to the mRNA regulation of ACSS2

(Figure S4E).

Subsequently, we supplied cells with 13C6-glucose,
13C5-

glutamine, or 13C2-acetate to compare the relative contributions

of these important nutritional sources to palmitate synthesis. In

normal growth conditions, glucose was the main source for fatty

acid synthesis, followed closely by acetate (Figure 5H). In

contrast, metabolic stress switched the preferred nutritional

source to acetate and completely abrogated the contribution

from glucose (Figure 5H). As previously reported, there was an

increase in glutamine-labeled palmitate during hypoxic condi-

tions (Figure 5H; Filipp et al., 2012; Metallo et al., 2012; Mullen

et al., 2012; Wise et al., 2011). However, neither glucose nor

glutamine, whether in normal growth conditions or low oxygen

and low serum, ever labeled palmitate as extensively as acetate

did during metabolic stress.

ACSS2 Silencing Inhibits Spheroid and Tumor Growth
DU145 + shNTC and DU145 + shACSS2#64 cells were cultured

as spheroids in 10% or 1% serum and in the presence or

absence of doxycycline. Expression of shACSS2 by doxycycline

decreased ACSS2 expression and caused significant growth

inhibition, which was more pronounced under low-serum condi-

tions (Figure 6A). We had observed previously that acetate

was being used to generate lipids (Figures 4 and 5). In addition,

the FASN inhibitor studies and spheroid growth after ACSS2

silencing prompted us to investigate the in vivo efficacy of

ACSS2 silencing on tumor growth and survival. For this we

also generated a BT474c1 cell line expressing inducible shRNA

targeting ACSS2 (Figure 5A). Nude mice were injected subcuta-

neously with DU145, MDA-MB-468, and BT474c1 cells express-

ing ACSS2 shRNA or a nontargeting control or empty vector. All

three xenograft models displayed decreases in tumor growth

when ACSS2 was silenced (Figures 6B, 6C, S5A, and S5B).

Gene silencing was confirmed by immunohistochemistry or

quantitative RT-PCR (qRT-PCR) (Figures 6D, S5C, and S5D).

We also noted that, by the end of the xenograft studies, all

mice bearing tumors depleted of ACSS2 (i.e., +DOX) were still

viable, while nontreated or vector control mice exhibited higher

mortality rates, which were not necessarily associated with

tumor burden (Figure 6E).

Our previous results suggested that ACSS2 expression was

often upregulated under hypoxic conditions (Figure 3). To

examine this in vivo, serial sections from three separate

BT474c1 + shACSS2#20 (no DOX) tumors were stained with pi-

monidazole, a hypoxia-selective marker, and ACSS2. Indeed,

costaining was observed, indicating that hypoxic tumor regions

have significantly higher levels of ACSS2 compared to nonhy-

poxic regions (Figures 6F and 6G). Together, these results

confirm that ACSS2 is upregulated in areas of hypoxia in tumors

and required for efficient growth and survival of cancer cells

in vivo.

DISCUSSION

Hypoxia is a common feature of tumors that have a poor clinical

prognosis and display aggressive traits, such as increased met-
astatic and migratory potential, chemoresistance, and stem-

ness. We also know that lipid metabolism is altered drastically

under these conditions (Ackerman and Simon, 2014). Our initial

studies identified that most breast and prostate cancer cell lines

were sensitive to fatty acid synthesis inhibition when cultured as

spheroids or grown as tumor xenografts. However, the only tis-

sue culture condition that faithfully preserved this sensitivity

was when cells were grown under metabolic stress, thus,

strongly suggesting that many cancer cells find a means to sur-

vive and proliferate regardless of poor nutrient delivery and

hypoxia.

The functional screens and in-vivo-induced silencing of

ACSS2 in tumor xenografts highlighted the essentiality of

ACSS2 under metabolically stressed conditions. The metabolic

and lipidomic analyses revealed a mechanistic solution for the

need of acetate and ACSS2 in cancer cells by demonstrating

that, under tumor-like tissue culture conditions, there is a switch

in nutrient utilization from glucose to acetate to support fatty

acid and lipid biosynthesis. In support of this mechanism, we

found that ACSS2 was indeed significantly upregulated in hyp-

oxic regions of tumor xenografts and when cancer cells were

exposed to prolonged oxygen and lipid withdrawal. ACSS2

expression was transcriptionally controlled by a synergistic

interaction between HIF and SREBF2 signaling. In addition,

copy-number gain of ACSS2 was observed in breast carci-

noma, and the lack of cancer consensus genes and the size

of the narrow amplicon region suggested selection pressure.

The data mining information was supported by results from

examining tissue microarrays showing that ACSS2 was highly

expressed in IDCs, the most common histological breast cancer

subtype. Likewise, increased ACSS2 expression seemed to be

more closely associated with prostate metastasis than in pri-

mary tumors.

Our observed link between acetate metabolism and tumor

growth coupled with the knowledge that the primary source of

acetate production within the body is by the intestinal microbiota

compelled us to investigate if there was a potential link between

colorectal cancers and ACSS2. Further cancer data mining

revealed copy-number gain or upregulation of ACSS2 in more

than a quarter of all colorectal cancer (data not shown). If

ACSS2 silencing proves to be effective at inhibiting colorectal

tumor growth, it may reveal a disease in which ACSS2 would

be an attractive target for future drug discovery. Furthermore,

in cells with active lipid biosynthesis, acetate is converted to

acetyl-CoA in the cytosol and then incorporated into fatty acids.

Therefore, radiolabeled acetate is the most lipid-specific tracer

available for positron emission tomography (PET) imaging. Ace-

tate-based PET tracers are established clinical tools, but to date

there is not enough information on how this tracer reflects pertur-

bations in lipid biosynthesis in cancer cells (Lewis et al., 2014;

Oyama et al., 2002; Yun et al., 2009).We have identified a depen-

dency of breast cancers and prostate cancer on acetate meta-

bolism and ACSS2 activity. This presents an attractive opportu-

nity to use tracer technology to identify tumors that would be

responsive to ACSS2-targeted therapy. Moreover, as acetate

uptake is coupled to ACSS2 activity, acetate PET tracers could

provide an important pharmacodynamic biomarker for treatment

response and for detecting when tumors become refractory to

treatment.
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Figure 5. Acetate Is the Major Contributor to Palmitate Synthesis during Metabolic Stress

(A) Immunoblot of BT474c1 and DU145 protein extracts 72 hr postdoxycycline administration.

(B) Uptake of [3H]-acetate in BT474c1 and DU145 cells after doxycycline induced silencing of ACSS2. Cells were cultured in 10% serum and normoxia. Data are

presented as mean ± SEM in triplicate (n = 2).

(legend continued on next page)
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In conclusion, this study highlights the importance of under-

standing the context-dependent metabolic rewiring of cancer

cells in vivo, and provides evidence that acetate is a fundamental

nutrient that can fuel cancer growth. The therapeutic feasibility

of pharmacologically targeting ACSS2 is currently being

explored.

EXPERIMENTAL PROCEDURES

Cell Culture

LNCaP were obtained from the American Type Culture Collection. BT474c1

cells were a kind gift from Jose Baselga. All other cell lines were from the

London Research Institute (CRUK) cell services. DU145, LNCaP, and PC3

cell lines were grown in RPMI supplemented with either 10% or 1% fetal

calf serum (PAA Laboratories), 2 mM L-glutamine, and penicillin/strepto-

mycin. MCF7, BT20, BT474, BT474c1, BT549, MDA-MB-231, MDA-MB-

468, SkBr3, and T47D cell lines were grown in Dulbecco’s modified Eagle’s

medium (DMEM)/F12 with either 10% or 1% fetal calf serum (PAA Labora-

tories), 2 mM L-glutamine, and penicillin/streptomycin. MCF10a and

MCF10A + HER2 (a kind gift from Dr. Zachary Schafer) cells were grown in

DMEM/F12 with either 5% or 0.5% horse serum with 20 ng/ml epidermal

growth factor, 5 mg/ml hydrocortisone, 10 mg/ml insulin, and 100 ng/ml

cholera toxin.

Antibodies and Reagents

ACSS2 (AceS1) antibody (D19C6) and FASN were purchased from Cell

Signaling Technology. Antitubulin, antiactin, anti-ACSS1 (HPA043228), and

anti-ACSS2 (HPA004141) antibodies were purchased from Sigma-Aldrich.

HypoxyProbe kit, including pimonidazole, was purchased from Chemicon

International. All chemicals were purchased from Fisher Scientific or

Sigma-Aldrich. The 13C-labeled metabolites were purchased from Cam-

bridge Isotopes, and 14C-labeled and 3H-labeled acetate were purchased

from PerkinElmer. Secondary antibodies were purchased from LI-COR

Biosciences.

Spheroid Growth Assay

For spheroid formation, cells were trypsinized, counted, mixed with 2% ma-

trigel in culture medium, and placed in 96-well ultralow attachment plates

(Costar). Spheroid formation was initiated by centrifugation at 850 3 g for

10 min, and cultures were incubated for the times indicated. Fresh growth

medium, containing either ethanol or doxycycline (0.5 mg/ml), was adminis-

tered every 48 hr. Spheroid size was determined at the times indicated by

automated imaging on an inverted microscope (Axiovert 100M, Carl Zeiss).

Xenograft Experiments

Female BALB/c nude mice (Charles River Laboratories) were injected sub-

cutaneously with BT474, BT474c1, DU145, or MDA-MB-468 cells and al-

lowed to establish for 1 week. When BT474 or BT474c1 cells were

used, mice were implanted with 17-beta-estradiol 0.36 mg/pellet 24 hr

prior to injection of cells. For shRNA induction, animals were given a doxy-

cycline-containing diet (Harlan Laboratories) or doxycycline-supplemented

drinking water, and tumor growth was followed for the indicated time

period. Tumor volume was determined by caliper measurements and the
(C) Schematic representation of the final reaction in the synthesis of PC and PE.

(D) Change in the steady-state intracellular levels of CDP-choline and CDP-ethano

in SMEM + 1% serum and hypoxia (0.1% O2). Data are presented as mean ± SE

(E) BT474c1 cells were transfected with indicated siRNAs for 24 hr prior to the

(0.1% O2). Cell counts were performed 72 hr later. Data are normalized to a non

triplicate (n = 1).

(F) Immunoblot for ACSS2 expression in cell lysates from the experiment in (E).

(G) 13C2-acetate-dependent labeling of palmitate in indicated growth conditions

(H) 13C6-glucose-,
13C5-glutamine-, and 13C2-acetate-dependent labeling of palm

glucose, glutamine, and acetate were equal in all three conditions. Data are pres

See also Figure S4.
ellipsoidal volume formula: ½ 3 length 3 width2. Where available, tumor

burden also was determined using bioluminescence imaging at indicated

times. Mice were maintained in individually ventilated cages with environ-

mental enrichment. All procedures were performed with anesthetic and

postoperative analgesics under the Animal (Scientific Procedures) Act

1986 and the EU Directive 2010. Animal experiments at Imperial College

London were carried out under UK Home Office Project License 70/7177

(E.O.A.) with ethical approval from Imperial College London within a Desig-

nated Establishment under the Act (the Central Biomedical Services Unit

at Imperial College London). Animal experiments at the London Research

Institute were performed under UK Home Office Project License 80/2330

(A.S.) after approval by a local ethics committee. Animal experiments at

the Beatson Institute were performed under UK Home Office Project Li-

cense 60/4181 (K.B.) and carried out with ethical approval from University

of Glasgow.

LC-MS

Cells were plated onto 12-well plates and cultured in standardmediumDMEM/

F12 + 10% fetal bovine serum and 2 mM glutamine. Medium was replaced for

specified periods with fresh physiologically relevant medium containing amino

acid concentrations as dictated by http://www.nlm.nih.gov/medlineplus/ency/

article/003361.htm. In addition, all heavy carbon labeling was done using final

concentrations of 5.5 mM glucose, or 0.65 mM glutamine, and 0.10–0.50 mM

acetate. Metabolites were extracted with a cold solution (�20�C) composed of

methanol, acetonitrile, and water (5:3:2). The insoluble material was immedi-

ately pelleted in a cooled (0�C) centrifuge at 16,000 3 g for 15 min, and the

supernatant was collected for subsequent LC-MS analysis. The protein con-

centration in each well was calculated using a Lowry assay. Alternatively, a

separate plate was seeded in parallel and used for cell counts. A ZIC-pHILIC

column (4.6 3 150 mm, guard column 2.1 3 20 mm, Merck) was used for

LC separation using formic acid, water, and acetonitrile as component of the

mobile phase. Metabolites were detected using Thermo Exactive mass spec-

trometer (Thermo Fisher Scientific).

For lipidomic studies, cells were incubated in media containing 5.5 mM
13C6-glucose for 24 hr prior to lipid isolation. Cell pellets were washed twice

with cold degassed PBS and resuspended in methanol before transfer to

silanized glass tubes on dry ice to Babraham Lipidomics Facility for lipid

extraction and analysis. Samples were spiked with 400 ng 12:0/12:0-PC,

100 ng 17:0-LPC, 300 ng 12:0/12:0-PE, and 100 ng 17:1-LPE; 0.88% NaCl;

and chloroform. The mixture was vortexed for 20 s at room temperature and

sonicated in an ice-cold water bath for 2 min. Samples were centrifuged at

1,100 rpm at 4�C for 15 min. The lower phase was collected. The upper phase

was extracted with synthetic lower phase (mix chloroform/methanol/0.88%

NaCl at volume ratio of 2:1:1, after phase separation, take the lower phase

as synthetic lower phase for second extraction of lipid). The resulting lower

phase was combined and dried under vacuum at room temperature with

SpeedVac (Thermo Scientific) and redissolved in chloroform. The final product

was injected for LC-MS/MS analysis using a Thermo Orbitrap Elite system

(Thermo Fisher Scientific) hyphenated with a five-channel online degasser,

four-pump, column oven, and autosampler with cooler Prominence HPLC sys-

tem (Shimadzu) for lipids analysis. In detail, lipid classes were separated on a

normal-phase silica gel column (2.13 150 mm, 4micro, MicoSolv Technology)

with hexane/dichloromethane/chloroform/methanol/acetanitrile/water/ethyl-

amine solvent gradient based on the polarity of head group. High resolution

(240k at m/z 400)/accurate mass (with mass accuracy < 5 ppm) and tandem
lamine following transfection of the indicated siRNAs in BT474c1 cells cultured

M (n = 3).

addition of 1% serum, 10% serum, or 10% LPDS and transferred to hypoxia

targeting siRNA control for each condition and represent the mean ± SEM in

after 24 hr. Data are presented as mean ± SEM (n = 3).

itate in indicated growth conditions after 24 hr. The relative concentrations of

ented as mean ± SEM (n = 3).
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Figure 6. Silencing of ACSS2 Expression Inhibited Tumor Xenograft Growth

(A) Spheroid growth was monitored following doxycycline-induced ACSS2 silencing in DU145 + shNTC and DU145 + shACSS2#64 cells in indicated growth

conditions. Data are presented as mean ± SEM (n R 4).

(B and C) Nude mice (nu/nu) were injected subcutaneously with DU145 (B) or BT474c1 (C) cells. Silencing of ACSS2 was initiated by providing doxycycline at the

indicated time. Each group is presented mean tumor volume ± SEM.

(legend continued on next page)
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MS (collision-induced fragmentation) were used for molecular species identi-

fication and quantification. The identity of lipid was further confirmed by refer-

ence to appropriate lipids standards.

See also the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.ccell.2014.12.002.
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Laakso, T., Budczies, J., Bucher, E., Yetukuri, L., Castillo, S., et al. (2011).

Novel theranostic opportunities offered by characterization of altered mem-

brane lipid metabolism in breast cancer progression. Cancer Res. 71, 3236–

3245.

Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-

mediated expression of pyruvate dehydrogenase kinase: a metabolic switch

required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185.

Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa,

K., Kashihara, D., Hirano, K., Tani, T., et al. (2013). The gut microbiota sup-

presses insulin-mediated fat accumulation via the short-chain fatty acid recep-

tor GPR43. Nat. Commun. 4, 1829.

Kuhajda, F.P., Jenner, K., Wood, F.D., Hennigar, R.A., Jacobs, L.B., Dick, J.D.,

and Pasternack, G.R. (1994). Fatty acid synthesis: a potential selective target

for antineoplastic therapy. Proc. Natl. Acad. Sci. USA 91, 6379–6383.

Lewis, D.Y., Boren, J., Shaw, G.L., Bielik, R., Ramos-Montoya, A., Larkin, T.J.,

Martins, C.P., Neal, D.E., Soloviev, D., and Brindle, K.M. (2014). Late imaging

with [1-11C]acetate improves detection of tumor fatty acid synthesis with PET.

J. Nucl. Med. 55, 1144–1149.

Lundquist, F., Tygstrup, N., Winkler, K., Mellemgaard, K., and Munck-

Petersen, S. (1962). Ethanol metabolism and production of free acetate in

the human liver. J. Clin. Invest. 41, 955–961.

Luong, A., Hannah, V.C., Brown, M.S., and Goldstein, J.L. (2000). Molecular

characterization of human acetyl-CoA synthetase, an enzyme regulated by

sterol regulatory element-binding proteins. J. Biol. Chem. 275, 26458–26466.

Maxwell, C.R., Spangenberg, R.J., Hoek, J.B., Silberstein, S.D., and Oshinsky,

M.L. (2010). Acetate causes alcohol hangover headache in rats. PLoS ONE 5,

e15963.

Menendez, J.A., and Lupu, R. (2007). Fatty acid synthase and the lipogenic

phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777.

Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K.,

Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012).

Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypox-

ia. Nature 481, 380–384.

Migita, T., Ruiz, S., Fornari, A., Fiorentino, M., Priolo, C., Zadra, G., Inazuka, F.,

Grisanzio, C., Palescandolo, E., Shin, E., et al. (2009). Fatty acid synthase: a

metabolic enzyme and candidate oncogene in prostate cancer. J. Natl.

Cancer Inst. 101, 519–532.

Mullen, A.R., Wheaton, W.W., Jin, E.S., Chen, P.H., Sullivan, L.B., Cheng, T.,

Yang, Y., Linehan, W.M., Chandel, N.S., and DeBerardinis, R.J. (2012).

Reductive carboxylation supports growth in tumour cells with defective mito-

chondria. Nature 481, 385–388.

Orita, H., Coulter, J., Tully, E., Kuhajda, F.P., and Gabrielson, E. (2008).

Inhibiting fatty acid synthase for chemoprevention of chemically induced

lung tumors. Clin. Cancer Res. 14, 2458–2464.

Oyama, N., Akino, H., Kanamaru, H., Suzuki, Y., Muramoto, S., Yonekura, Y.,

Sadato, N., Yamamoto, K., and Okada, K. (2002). 11C-acetate PET imaging of

prostate cancer. J. Nucl. Med. 43, 181–186.

Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006).

HIF-1 mediates adaptation to hypoxia by actively downregulating mitochon-

drial oxygen consumption. Cell Metab. 3, 187–197.

Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C.,

Kuo, W.L., Chen, C., Zhai, Y., et al. (1998). High resolution analysis of DNA

copy number variation using comparative genomic hybridization to microar-

rays. Nat. Genet. 20, 207–211.

Pizer, E.S., Jackisch, C., Wood, F.D., Pasternack, G.R., Davidson, N.E., and

Kuhajda, F.P. (1996a). Inhibition of fatty acid synthesis induces programmed

cell death in human breast cancer cells. Cancer Res. 56, 2745–2747.

Pizer, E.S., Wood, F.D., Heine, H.S., Romantsev, F.E., Pasternack, G.R., and

Kuhajda, F.P. (1996b). Inhibition of fatty acid synthesis delays disease pro-

gression in a xenograft model of ovarian cancer. Cancer Res. 56, 1189–1193.

Pizer, E.S., Wood, F.D., Pasternack, G.R., and Kuhajda, F.P. (1996c). Fatty

acid synthase (FAS): a target for cytotoxic antimetabolites in HL60 promyelo-

cytic leukemia cells. Cancer Res. 56, 745–751.
70 Cancer Cell 27, 57–71, January 12, 2015 ª2015 The Authors
Pizer, E.S., Pflug, B.R., Bova, G.S., Han, W.F., Udan, M.S., and Nelson, J.B.

(2001). Increased fatty acid synthase as a therapeutic target in androgen-inde-

pendent prostate cancer progression. Prostate 47, 102–110.

Porstmann, T., Santos, C.R., Griffiths, B., Cully, M., Wu, M., Leevers, S.,

Griffiths, J.R., Chung, Y.L., and Schulze, A. (2008). SREBP activity is regulated

by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8,

224–236.
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